首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3937篇
  免费   287篇
  国内免费   1篇
  4225篇
  2023年   10篇
  2022年   34篇
  2021年   65篇
  2020年   38篇
  2019年   50篇
  2018年   82篇
  2017年   59篇
  2016年   120篇
  2015年   209篇
  2014年   216篇
  2013年   283篇
  2012年   373篇
  2011年   367篇
  2010年   186篇
  2009年   164篇
  2008年   262篇
  2007年   266篇
  2006年   223篇
  2005年   235篇
  2004年   200篇
  2003年   181篇
  2002年   180篇
  2001年   31篇
  2000年   23篇
  1999年   39篇
  1998年   39篇
  1997年   45篇
  1996年   37篇
  1995年   24篇
  1994年   25篇
  1993年   17篇
  1992年   19篇
  1991年   16篇
  1990年   14篇
  1989年   11篇
  1988年   12篇
  1987年   10篇
  1986年   17篇
  1985年   7篇
  1984年   9篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1978年   4篇
  1976年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有4225条查询结果,搜索用时 15 毫秒
71.
72.
Fluorescence correlation spectroscopy (FCS) is a time-averaging fluctuation analysis of small molecular ensembles, combining maximum sensitivity with high statistical confidence. Among a multitude of physical parameters that are, in principle, accessible by FCS, it most conveniently allows to determine local concentrations, mobility coefficients, and characteristic rate constants of fast-reversible and slow-irreversible reactions of fluorescently labeled biomolecules at very low (nanomolar) concentrations, under equilibrium conditions and without physical separation. Its presently most popular instrumentation by confocal-microscope setups allows for a spatial resolution of fractions of femtoliters for the measurement volumes, containing sparse or even single molecules at any time, and encourages the adaptation of the solution-based technique for cellular applications. The scope of this review is thus, to introduce the FCS technique in particular to the reader with biological background, searching for new methods for a precise quantification of physical parameters governing cellular mechanisms and dynamics, especially if high sensitivity and fast dynamic resolution are required. After a short theoretical introduction, examples are given for the so far most important experimental applications, with respect to their implementation in cellular systems. As an interesting alternative to the confocal instrumentation, two-photon excitation will be introduced, offering a number of important advantages especially in cellular systems with high-noise and low-signal levels.  相似文献   
73.

Background

We studied the ability of adenovirus type 5 (Ad5) to encapsidate new cellular ligands carried by their fibers to yield functional retargeted vectors for gene therapy. Recombinant Ad5 fibers containing shaft repeats 1 to 7 and an extrinsic trimerization motif, and terminated by its native knob or amino acid motifs containing RGD, have been rescued into infectious virions.

Methods

Polypeptide ligands of cell surface molecules, including single‐chain antibodies or epidermal growth factor, were cloned into recombinant fibers. Phenotypic analysis of fiber constructs and rescuing into the Ad5 genome were performed. Recombinant viruses were characterized with reference to fiber content, growth rate and infectivity.

Results

A major limiting factor for recovering viable recombinant Ad5 carrying fiber‐fused polypeptide ligands was apparently the ability of the ligand to fold correctly within the cellular cytoplasm. This constraint has previously not been systematically evaluated in the literature. Phenotypic analysis of the fiber‐ligand fusions showed that their degree of cytoplasmic solubility correlated with their ability to yield viable Ad5 vectors. Our results suggested that the fiber manipulations diminish virus growth rate, probably through different, opposing effects: (i) the reduced shaft length increases fiber solubility in the absence of the knob but (ii) diminishes virus entry, and (iii) the absence of the knob alters the overall protein composition of the virion and decreases its fiber copy number.

Conclusions

Based on our findings, cytoplasmic solubility and cytoplasmic ligand reactivity of fiber‐ligand fusion proteins are the best prediction criterion for viability and recovery of genetically retargeted Ad vectors. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   
74.
This is the first report of an antibody-fusion protein expressed intransgenic plants for direct use in a medical diagnostic assay. By the use ofgene constructs with appropriate promoters, high level expression of ananti-glycophorin single-chain antibody fused to an epitope of the HIV virus wasobtained in the leaves and stems of tobacco, tubers of potato and seed ofbarley. This fusion protein replaces the SimpliRED diagnostic reagent,used for detecting the presence of HIV-1 antibodies in human blood. The reagentis expensive and laborious to produce by conventional means since chemicalmodifications to a monoclonal antibody are required. The plant-produced fusionprotein was fully functional (by ELISA) in crude extracts and, for tobacco atleast, could be used without further purification in the HIV agglutinationassay. All three crop species produced sufficient reagent levels to be superiorbioreactors to bacteria or mice, however barley grain was the most attractivebioreactor as it expressed the highest level (150 g of reagentg-1), is inexpensive to produce and harvest, poses aminuscule gene flow problem in the field, and the activity of the reagent islargely undiminished in stored grain. This work suggests that barley seed willbe an ideal factory for the production of antibodies, diagnosticimmuno-reagents, vaccines and other pharmaceutical proteins.  相似文献   
75.
The 8th International Symposium on Yersinia was held in Turku, Finland, 4–8 September 2002.  相似文献   
76.
77.
Censarek P  Beyermann M  Koch KW 《Biochemistry》2002,41(27):8598-8604
An increasing number of proteins are found that are regulated by the Ca(2+)-free state of calmodulin, apocalmodulin. Many of these targets harbor a so-called IQ motif within their primary sequence, but several target proteins of apocalmodulin lack this motif. We investigated whether the Ca(2+)-dependent calmodulin-binding site of nitric oxide synthase I could be transformed into a target site of apocalmodulin. Synthetic peptides representing the wild-type amino acid sequence and several peptides carrying mutations were studied by isothermal titration calorimetry and fluorescence spectroscopy. A single amino acid substitution of a negative charge to a positive charge can convert a classical Ca(2+)-dependent binding site of calmodulin into a target site for apocalmodulin. In addition, the introduction of hydrophobic amino acids increases the apparent binding affinity from the micromolar to the nanomolar range. Binding of wild-type and mutant peptides to Ca(2+)-calmodulin was enthalpically driven, and binding to apocalmodulin was entropically driven. Our data indicate that only a few selected amino acid positions in a calmodulin-binding site determine its Ca(2+) dependency.  相似文献   
78.
Laser light scatter analyzed by flow cytometry was used to monitor the volume of viable maturing murine spermatozoa. Upon release, dispersion, and dilution, epididymal sperm from fertile heterozygous c-ros knockout mice were smallest in the cauda region and largest in the corpus region. Cauda sperm from both infertile homozygous c-ros knockout and GPX5-Tag2 transgenic mice were abnormally large. When incubated, corpus and cauda sperm from normal mice became slightly enlarged and later returned to a smaller size. This suggests an immediate swelling due to high intracellular osmolality, which triggers a regulatory volume decrease (RVD) that results in a net volume reduction. Normal caput sperm increased in size continuously and became larger than the more mature sperm, indicating a lack of RVD. The ion-channel blocker quinine induced dose-dependent size increases in normal cauda sperm but not in caput sperm. Dose-dependent quinine action on mature sperm also included induction of tail angulation, and suppression of straight-line velocity and linearity. The kinematic effects were more sensitive, with a quicker onset, but they diminished with time in contrast to tail angulation, which intensified. These results suggest that kinematic changes are an early phenomenon of swelling, which gradually accumulates at the cytoplasmic droplet to cause flagellar angulation. Disruption of the epididymal maturation of sperm volume regulation capacity would hinder the transport of sperm in the female tract, and may thereby explain infertility under certain conditions, but may also provide a novel approach to male contraception.  相似文献   
79.
Fluorescence (auto)correlation spectroscopy (FCS) has developed into a widely used method for investigating molecular dynamics and mobility of molecules in vitro and in vivo. Dual-color cross-correlation, an extension of this technique, also assesses the concomitant movement of two spectrally distinguishable fluorescent molecules and has therefore proven superior to autocorrelation analysis to study interactions between different molecular species in solution. Here we explore the benefits of cross-correlation analysis when applied to live cells, by demonstrating its potential in analyzing endocytic processes. Bacterial cholera toxin (CTX) was labeled with Cy2 and Cy5 dyes on different subunits of the same holotoxin. Along the endocytic pathway, positive cross-correlation between the A and B subunits was first preserved, later followed by a loss in cross-correlation upon their separation in the Golgi. Furthermore, endocytosis of a mixture of only Cy2- and only Cy5-labeled holotoxins also gave rise to cross-correlation. Our results suggest that cross-correlation may be used to recognize whether different cargoes use the same endocytic pathway. Additionally, we show that cross-correlation is applicable to two-dimensional membrane diffusion. CTX bound to GM1-containing artificial giant unilamellar vesicles was diffusible, whereas CTX bound to the plasma membrane was immobile on the FCS time-scale, possibly because of raft-association of GM1.  相似文献   
80.
Ribosome biogenesis is a conserved process in eukaryotes that requires a large number of small nucleolar RNAs and trans-acting proteins. The Saccharomyces cerevisiae MRD1 (multiple RNA-binding domain) gene encodes a novel protein that contains five consensus RNA-binding domains. Mrd1p is essential for viability. Mrd1p partially co-localizes with the nucleolar protein Nop1p. Depletion of Mrd1p leads to a selective reduction of 18 S rRNA and 40 S ribosomal subunits. Mrd1p associates with the 35 S precursor rRNA (pre-rRNA) and U3 small nucleolar RNAs and is necessary for the initial processing at the A(0)-A(2) cleavage sites in pre-rRNA. The presence of five RNA-binding domains in Mrd1p suggests that Mrd1p may function to correctly fold pre-rRNA, a requisite for proper cleavage. Sequence comparisons suggest that Mrd1p homologues exist in all eukaryotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号