首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3937篇
  免费   287篇
  国内免费   1篇
  4225篇
  2023年   10篇
  2022年   34篇
  2021年   65篇
  2020年   38篇
  2019年   50篇
  2018年   82篇
  2017年   59篇
  2016年   120篇
  2015年   209篇
  2014年   216篇
  2013年   283篇
  2012年   373篇
  2011年   367篇
  2010年   186篇
  2009年   164篇
  2008年   262篇
  2007年   266篇
  2006年   223篇
  2005年   235篇
  2004年   200篇
  2003年   181篇
  2002年   180篇
  2001年   31篇
  2000年   23篇
  1999年   39篇
  1998年   39篇
  1997年   45篇
  1996年   37篇
  1995年   24篇
  1994年   25篇
  1993年   17篇
  1992年   19篇
  1991年   16篇
  1990年   14篇
  1989年   11篇
  1988年   12篇
  1987年   10篇
  1986年   17篇
  1985年   7篇
  1984年   9篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1978年   4篇
  1976年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有4225条查询结果,搜索用时 15 毫秒
131.
Plant Cell, Tissue and Organ Culture (PCTOC) - Slow-growth is a biotechnological tool for medium-term conservation of plant germplasm under in vitro conditions. In the present study, we assessed...  相似文献   
132.
While modelling habitat suitability and species distribution, ecologists must deal with issues related to the spatial resolution of species occurrence and environmental data. Indeed, given that the spatial resolution of species and environmental datasets range from centimeters to hundreds of kilometers, it underlines the importance of choosing the optimal combination of resolutions to achieve the highest possible modelling prediction accuracy. We evaluated how the spatial resolution of land cover/waterbody datasets (meters to 1 km) affect waterbird habitat suitability models based on atlas data (grid cell of 12 × 11 km). We hypothesized that the area, perimeter and number of waterbodies computed from high resolution datasets would explain distributions of waterbirds better because coarse resolution datasets omit small waterbodies affecting species occurrence. Specifically, we investigated which spatial resolution of waterbodies better explain the distribution of seven waterbirds nesting on ponds/lakes with areas ranging from 0.1 ha to hundreds of hectares. Our results show that the area and perimeter of waterbodies derived from high resolution datasets (raster data with 30 m resolution, vector data corresponding with map scale 1:10 000) explain the distribution of the waterbirds better than those calculated using less accurate datasets despite the coarse grain of the species data. Taking into account the spatial extent (global vs regional) of the datasets, we found the Global Inland Waterbody Dataset to be the most suitable for modelling distribution of waterbirds. In general, we recommend using land cover data of a resolution sufficient to capture the smallest patches of the habitat suitable for a given species’ presence for both fine and coarse grain habitat suitability and distribution modelling.  相似文献   
133.
CRISPR-associated nucleases are powerful tools for precise genome editing of model systems, including human organoids. Current methods describing fluorescent gene tagging in organoids rely on the generation of DNA double-strand breaks (DSBs) to stimulate homology-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated integration of the desired knock-in. A major downside associated with DSB-mediated genome editing is the required clonal selection and expansion of candidate organoids to verify the genomic integrity of the targeted locus and to confirm the absence of off-target indels. By contrast, concurrent nicking of the genomic locus and targeting vector, known as in-trans paired nicking (ITPN), stimulates efficient HDR-mediated genome editing to generate large knock-ins without introducing DSBs. Here, we show that ITPN allows for fast, highly efficient, and indel-free fluorescent gene tagging in human normal and cancer organoids. Highlighting the ease and efficiency of ITPN, we generate triple fluorescent knock-in organoids where 3 genomic loci were simultaneously modified in a single round of targeting. In addition, we generated model systems with allele-specific readouts by differentially modifying maternal and paternal alleles in one step. ITPN using our palette of targeting vectors, publicly available from Addgene, is ideally suited for generating error-free heterozygous knock-ins in human organoids.

A major downside of double-strand break-mediated genome editing is the need to verify the genomic integrity of the targeted locus and confirm the absence of off-target indels. This study shows that in-trans paired nicking is a mutation-free CRISPR strategy to introduce precise knock-ins into human organoids; its genomic fidelity allows all knock-in cells to be pooled, accelerating the establishment of new organoid models.  相似文献   
134.
The amount of settling phosphorus was measured in Římov Reservoir using sediment trap technique from April 1986 to April 1987. Sediment traps were placed at three depths near the dam of the reservoir and at the bottom along the reservoir. The highest amount of phosphorus in trapped material was found during the fall turnover in the epilimnion and near the bottom in both spring periods (1986,1997). During the growing season the changes in dry weight and total phosphorus in settling seston were related to changes of phytoplankton biomass in the trophogenic layer. The amount of trapped phosphorus was higher near the bottom than in the upper layers of the reservoir throughout the year.  相似文献   
135.
Chronic kidney disease (CKD) is part of a number of systemic and renal diseases and may reach epidemic proportions over the next decade. Efforts have been made to improve diagnosis and management of CKD. We hypothesised that combining metabolomic and proteomic approaches could generate a more systemic and complete view of the disease mechanisms. To test this approach, we examined samples from a cohort of 49 patients representing different stages of CKD. Urine samples were analysed for proteomic changes using capillary electrophoresis-mass spectrometry and urine and plasma samples for metabolomic changes using different mass spectrometry-based techniques. The training set included 20 CKD patients selected according to their estimated glomerular filtration rate (eGFR) at mild (59.9±16.5 mL/min/1.73 m2; n = 10) or advanced (8.9±4.5 mL/min/1.73 m2; n = 10) CKD and the remaining 29 patients left for the test set. We identified a panel of 76 statistically significant metabolites and peptides that correlated with CKD in the training set. We combined these biomarkers in different classifiers and then performed correlation analyses with eGFR at baseline and follow-up after 2.8±0.8 years in the test set. A solely plasma metabolite biomarker-based classifier significantly correlated with the loss of kidney function in the test set at baseline and follow-up (ρ = −0.8031; p<0.0001 and ρ = −0.6009; p = 0.0019, respectively). Similarly, a urinary metabolite biomarker-based classifier did reveal significant association to kidney function (ρ = −0.6557; p = 0.0001 and ρ = −0.6574; p = 0.0005). A classifier utilising 46 identified urinary peptide biomarkers performed statistically equivalent to the urinary and plasma metabolite classifier (ρ = −0.7752; p<0.0001 and ρ = −0.8400; p<0.0001). The combination of both urinary proteomic and urinary and plasma metabolic biomarkers did not improve the correlation with eGFR. In conclusion, we found excellent association of plasma and urinary metabolites and urinary peptides with kidney function, and disease progression, but no added value in combining the different biomarkers data.  相似文献   
136.
Functional differences between healthy progenitor and cancer initiating cells may provide unique opportunities for targeted therapy approaches. Hematopoietic stem cells are tightly controlled by a network of CDK inhibitors that govern proliferation and prevent stem cell exhaustion. Loss of Inca1 led to an increased number of short-term hematopoietic stem cells in older mice, but Inca1 seems largely dispensable for normal hematopoiesis. On the other hand, Inca1-deficiency enhanced cell cycling upon cytotoxic stress and accelerated bone marrow exhaustion. Moreover, AML1-ETO9a-induced proliferation was not sustained in Inca1-deficient cells in vivo. As a consequence, leukemia induction and leukemia maintenance were severely impaired in Inca1−/− bone marrow cells. The re-initiation of leukemia was also significantly inhibited in absence of Inca1−/− in MLL—AF9- and c-myc/BCL2-positive leukemia mouse models. These findings indicate distinct functional properties of Inca1 in normal hematopoietic cells compared to leukemia initiating cells. Such functional differences might be used to design specific therapy approaches in leukemia.  相似文献   
137.
The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.  相似文献   
138.
The human aldo-keto reductase AKR1C2 converts 5α-dihydrotestosterone to the less active 3α-androstanediol and has a minor 20-ketosteroid reductase activity that metabolises progesterone to 20α-hydroxyprogesterone. AKR1C2 is expressed in different peripheral tissues, but its role in uterine diseases like endometriosis has not been studied in detail. Some progestins used for treatment of endometriosis inhibit AKR1C1 and AKR1C3, with unknown effects on AKR1C2. In this study we investigated expression of AKR1C2 in the model cell lines of peritoneal endometriosis, and examined the ability of recombinant AKR1C2 to metabolise progesterone and progestin dydrogesterone, as well as its potential inhibition by progestins. AKR1C2 is expressed in epithelial and stromal endometriotic cell lines at the mRNA level. The recombinant enzyme catalyses reduction of progesterone to 20α-hydroxyprogesterone with a 10-fold lower catalytic efficiency than the major 20-ketosteroid reductase, AKR1C1. AKR1C2 also metabolises progestin dydrogesterone to its 20α-dihydrodydrogesterone, with 8.6-fold higher catalytic efficiency than 5α-dihydrotestosterone. Among the progestins that are currently used for treatment of endometriosis, dydrogesterone, medroxyprogesterone acetate and 20α-dihydrodydrogesterone act as AKR1C2 inhibitors with low μM K(i) values in vitro. Their potential in vivo effects should be further studied.  相似文献   
139.
ABSTRACT: BACKGROUND: Blood-born miRNA signatures have recently been reported for various tumor diseases. Here, we compared themiRNA signature in Wilms tumor patients prior and after preoperative chemotherapy according to SIOPprotocol 2001. RESULTS: We did not find a significant difference between miRNA signature of both groups. However both, Wilmstumor patients prior and after chemotherapy showed a miRNA signature different from healthy controls. Thesignature of Wilms tumor patients prior to chemotherapy showed an accuracy of 97.5% and of patients afterchemotherapy an accuracy of 97.0%, each as compared to healthy controls. CONCLUSION: Our results provide evidence for a blood-born Wilms tumor miRNA signature largely independent of fourweeks preoperative chemotherapy treatment.  相似文献   
140.
We report sphingolipid-related reorganization of gel-like microdomains in the plasma membrane of living Saccharomyces cerevisiae using trans-Parinaric acid (t-PnA) and 1,6-diphenyl-1,3,5-hexatriene (DPH). Compared to control, the gel-like domains were significantly reduced in the membrane of a sphingolipid-deficient lcb1-100 mutant. The same reduction resulted from sphingolipid depletion by myriocin. The phenotype could be reverted when a myriocin-induced block in sphingolipid biosynthesis was bypassed by exogenous dihydrosphingosine. Lipid order of less-ordered membrane regions decreased with sphingolipid depletion as well, as documented by DPH fluorescence anisotropy. The data indicate that organization of lateral microdomains is an essential physiological role of these structural lipids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号