全文获取类型
收费全文 | 3840篇 |
免费 | 488篇 |
国内免费 | 1篇 |
专业分类
4329篇 |
出版年
2021年 | 34篇 |
2019年 | 37篇 |
2017年 | 33篇 |
2016年 | 60篇 |
2015年 | 90篇 |
2014年 | 103篇 |
2013年 | 159篇 |
2012年 | 193篇 |
2011年 | 184篇 |
2010年 | 100篇 |
2009年 | 95篇 |
2008年 | 174篇 |
2007年 | 151篇 |
2006年 | 143篇 |
2005年 | 143篇 |
2004年 | 146篇 |
2003年 | 106篇 |
2002年 | 131篇 |
2001年 | 110篇 |
2000年 | 119篇 |
1999年 | 89篇 |
1998年 | 43篇 |
1997年 | 43篇 |
1996年 | 44篇 |
1995年 | 46篇 |
1994年 | 45篇 |
1993年 | 37篇 |
1992年 | 91篇 |
1991年 | 76篇 |
1990年 | 62篇 |
1989年 | 73篇 |
1988年 | 97篇 |
1987年 | 79篇 |
1986年 | 65篇 |
1985年 | 104篇 |
1984年 | 80篇 |
1983年 | 71篇 |
1982年 | 47篇 |
1981年 | 40篇 |
1980年 | 34篇 |
1979年 | 54篇 |
1978年 | 63篇 |
1977年 | 36篇 |
1976年 | 40篇 |
1975年 | 43篇 |
1974年 | 42篇 |
1973年 | 51篇 |
1972年 | 34篇 |
1971年 | 44篇 |
1969年 | 39篇 |
排序方式: 共有4329条查询结果,搜索用时 15 毫秒
81.
82.
E P Day S S David J Peterson W R Dunham J J Bonvoisin R H Sands L Que 《The Journal of biological chemistry》1988,263(30):15561-15567
The exchange coupling of reduced uteroferrin has been measured (19.8(5) cm-1 S1.S2) using recently developed techniques for studying metalloprotein magnetization. A spin Hamiltonian describing the coupled binuclear Fe(II).Fe(III) center has been used to fit the low and high field magnetization data, the EPR g values, and the highly anisotropic effective hyperfine tensor of the ferric site. The exchange coupling of the phosphate complex of reduced uteroferrin has also been measured (6.0(5) cm-1 S1.S2) using the same techniques. The smaller exchange coupling of the phosphate complex is comparable with the zero field splittings of the iron sites. This results in increased sensitivity of the system g values (found by calculation from the spin Hamiltonian) to variations of the zero field splitting parameters arising from heterogeneities in the protein microenvironment. Consequently, there is a very significant (9-fold) increase in the "effective g strain" of the system compared to the situation in the absence of phosphate. This, together with the larger g anisotropy (g = (1.06, 1.51, 2.27)), gives rise to an EPR signal for the phosphate complex of reduced uteroferrin which is extremely broad and difficult to detect but which has now been identified for the first time. 相似文献
83.
84.
Simultaneous determination of ascorbic acid and dehydroascorbic acid in cultures of C3H/10T1/2 cells
Luminita L. V. Ibric William F. Benedict Andrew R. Peterson 《In vitro cellular & developmental biology. Plant》1988,24(7):669-676
Summary A reproducible method is described for the separation and quantification of ascorbic acid and dehydroascorbic acid by ion-pairing
reverse-phase high performance liquid chromatography and detection by absorbance at 232 nm. Lowest detectable concentrations
with a linear response of detection were 5 nmol for ascorbic acid and 50 nmol for dehydroascorbic acid. This method was applied
to the analysis of C3H/10T1/2 cells and culture medium after influx or efflux experiments and single or multiple treatments
with ascorbic acid. Subsequent measurement of the radioactivity in the eluted fractions increased the detectability of both
ascorbic acid and dehydroascorbic acid to 10 to 20 pmol.
This research was supported by grant CA 09320 and CA 31574 from the National Cancer Institute, Bethesda, MD, and grant BC441
from The American Cancer Society. 相似文献
85.
This study addresses the question of the activation of quiescent transposable elements in maize breeding lines. The a-ruq reporter allele of the Uq transposable element system expresses Uq activity (spots or sectors of spots in otherwise colorless aleurone tissue) when exposed to various genotypes of assorted maize inbred lines lacking any active Uq element. This activation of quiescent Uq elements occurs randomly during the growth of the endosperm. It is concluded that there are components in the genome that enhance the rare activation of quiescent Uq elements. Further, it seems that this activation occurs in the absence of any stress-inducing treatment, but that normal growth conditions provide sufficient stimulus for such activation. 相似文献
86.
87.
88.
Susana Martin-Ortigosa David J. Peterson Justin S. Valenstein Victor S.-Y. Lin Brian G. Trewyn L. Alexander Lyznik Kan Wang 《Plant physiology》2014,164(2):537-547
The delivery of proteins instead of DNA into plant cells allows for a transient presence of the protein or enzyme that can be useful for biochemical analysis or genome modifications. This may be of particular interest for genome editing, because it can avoid DNA (transgene) integration into the genome and generate precisely modified “nontransgenic” plants. In this work, we explore direct protein delivery to plant cells using mesoporous silica nanoparticles (MSNs) as carriers to deliver Cre recombinase protein into maize (Zea mays) cells. Cre protein was loaded inside the pores of gold-plated MSNs, and these particles were delivered by the biolistic method to plant cells harboring loxP sites flanking a selection gene and a reporter gene. Cre protein was released inside the cell, leading to recombination of the loxP sites and elimination of both genes. Visual selection was used to select recombination events from which fertile plants were regenerated. Up to 20% of bombarded embryos produced calli with the recombined loxP sites under our experimental conditions. This direct and reproducible technology offers an alternative for DNA-free genome-editing technologies in which MSNs can be tailored to accommodate the desired enzyme and to reach the desired tissue through the biolistic method.Introducing DNA-modifying enzymes rather than DNA-based expression cassettes is an attractive alternative for genetic engineering and genome-editing applications such as gene targeting or site-specific recombination. It offers a transient presence of the enzymes, and the process can be coordinated with high levels of enzymatic activity at the time and sites of the desired DNA recombination events. Many DNA-metabolizing enzymes (endonucleases, transposases, and topoisomerases), when delivered in an unrestrained manner, show adverse effects on cell viability. Delivery in the form of protein or RNA may help to mitigate these effects (Cui et al., 2011; Sander et al., 2011; Watanabe et al., 2012). In addition, by introducing proteins, one can avoid the need to remove the protein-encoding DNA fragments from the engineered plant genome. This may help shorten the time from laboratory to field for future improved germplasms.Site-specific recombinases such as Cre or FLP have been widely used in genetic engineering applications (Sorrell and Kolb, 2005). The 38-kD Cre enzyme specifically binds to and recombines the 34-bp loxP sequences, allowing the removal, integration, or inversion of the DNA fragment flanked by these sequences (for review, see Wang et al., 2011). There are a number of established methodologies designed to provide the Cre recombinase activity for site-specific recombination in eukaryotic cells that do not involve the delivery of DNA. These methods include lipofection (Baubonis and Sauer, 1993), microinjection of protein or mRNA (de Wit et al., 1998; Luckow et al., 2009), electroporation of protein or mRNA (Kolb and Siddell, 1996; Ponsaerts et al., 2004), or using modified microorganisms for Cre delivery to their host cells (Vergunst et al., 2000; Koshy et al., 2010). Another strategy that has been used is the incubation or injection of tissues/cell cultures with cell-permeant Cre, a modified Cre protein fused to protein transduction domains or cell-penetrating peptides (Jo et al., 2001; Will et al., 2002; Lin et al., 2004; Nolden et al., 2006).For biotechnological applications in plant sciences, protein delivery systems have been developed, including microinjection (Wymer et al., 2001), protein immobilization to gold particles (Wu et al., 2011), and protein transduction through cell-penetrating peptides (for review, see Chugh et al., 2010). The cell-penetrating peptides were shown to enable intracellular delivery of the Cre recombinase protein to rice (Oryza sativa) callus tissues (Cao et al., 2006). Nanobiotechnology is offering an attractive alternative, since nanoparticles can be precisely tailored to deliver a particular biomolecule to the cell, tissue, or organism of interest when needed (for review, see Du et al., 2012). Mesoporous silica nanoparticles (MSNs) are particularly suited for this purpose. These porous nanoparticles are formed by a matrix of well-ordered pores that confers high loading capacity of molecules like proteins (for review, see Popat et al., 2011). Additionally, surfaces of MSNs can be readily modified, permitting the customization of nanoparticles to particular experimental needs (for review, see Trewyn et al., 2007). In our previous studies, it was shown that MSNs can be used for the codelivery of DNA and chemicals (Torney et al., 2007) as well as DNA and proteins (Martin-Ortigosa et al., 2012a) to plant cells via biolistics. To improve MSN performance as a projectile, gold plating of MSN surfaces was performed, increasing nanoparticle density and, subsequently, the ability to pass through the plant cell wall upon bombardment (Martin-Ortigosa et al., 2012b).In this work, the Cre recombinase enzyme was loaded into the pores of gold-plated MSNs and delivered through the biolistic method to maize (Zea mays) cells containing loxP sites integrated into chromosomal DNA (Lox-corn; Fig. 1A). Lox-corn expressed the glyphosate acetyltransferase gene (gat) and the Anemonia majano cyan fluorescent protein gene (AmCyan1) flanked by loxP sites. The MSN-released Cre enzyme recombined the loxP sites, thus removing the DNA fragment flanked by these sequences. Such excisions led to the expression of a variant of Discosoma sp. red fluorescent protein gene (DsRed2) and the loss of the selectable marker gene (Fig. 1A). Visual selection was used to recover the recombination events. Subsequently, fertile maize plants were regenerated from the recombined events and DNA analyses confirmed the recombination events. To our knowledge, this is the first time that MSNs have been used for the delivery of a functional recombinase into plant tissues, leading to successful genome editing.Open in a separate windowFigure 1.A, Schematic representation of the MSN-based bombardment technology. Cre protein is loaded into the pores of gold-plated MSN (Cre-6x-MSN) and subsequently bombarded onto immature embryos of a transgenic maize line carrying a loxP construct (Lox-corn). The parental transgenic Lox-corn tissues are blue fluorescence and herbicide resistant because they harbor a cassette with the glyphosate acetyltransferase (gat) selection gene and the AmCyan1 (cyan) marker gene flanked by the loxP sites. The DsRed2 (dsred) gene for the expression of a red fluorescent protein is placed downstream of the cassette. Once Cre recombinase is released inside the cell, it performs the recombination, excising gat-AmCyan1 genes and leading to the expression of the DsRed2 gene, switching the cell fluorescence pattern from blue to red. P, Promoter; T, terminator. UBINTRF, CYANF, and DSRED2R are primers for DNA analysis. B, Transmission electron microscope image showing the typical hexagonal shape and the well-ordered pore structure of a 6x-MSN. C, Scanning electron microscope image showing gold nanoparticle deposition (white dots) in all surfaces of 6x-MSN. D, Western blot showing Cre protein loading and release dynamics from 6x-MSN. The protein loading is almost immediate, even though some protein can be detected in the buffer even after 1 h of loading. For the release, some Cre protein can be observed after 24 h of incubation. Most of the protein remains in the 6x-MSN pellet. C+, 400 ng of Cre protein; Empty, a lane with no protein loading. The bands observed in the Empty lane were the spillover from the neighboring Pellet lane, which represents Cre-loaded 6x-MSN after the release experiment resuspended in Laemmli loading buffer (see “Materials and Methods”). 相似文献
89.
Julie A. Peterson John J. Obrycki James D. Harwood 《Biocontrol Science and Technology》2009,19(6):613-625
Despite the reported specificity of Bacillus thuringiensis proteins against target pests, a number of studies have indicated that the uptake of Bt-endotoxins from bioengineered crops could have negative effects on natural enemies. It is therefore essential to quantify exposure pathways in non-target arthropod food webs across multiple transgenic events. Adult ground beetles (Coleoptera: Carabidae) were collected from transgenic corn fields expressing lepidopteran-specific Cry1Ab, coleopteran-specific Cry3Bb1, and both Cry1Ab and Cry3Bb1 (stacked event), as well as a non-transgenic isoline. Carabid gut-contents were screened for Cry1Ab Bt-endotoxin using enzyme-linked immunosorbent assay. Significant numbers of carabids tested positive for Cry1Ab from the lepidopteran-specific field: Harpalus pensylvanicus (39%, 25 of 64), Stenolophus comma (4%, 6 of 136), Cratacanthus dubius (50%, 1 of 2), Clivina bipustulata (50%, 1 of 2), and Cyclotrachelus sodalis (20%, 1 of 5). The highest proportion of Bt-endotoxin uptake was 4–6 weeks post-anthesis. Only one species, H. pensylvanicus (5%, 4 of 75), screened positive for Cry1Ab from the stacked line, despite similar expression of this endotoxin in plant tissue harvested from both lines. This difference in Cry1Ab uptake could be due to changes in the non-target food web or differential rates of Bt-endotoxin decay between genetic events. This study has quantified the differential uptake of Cry1Ab Bt-endotoxin by the carabid community across multiple transgenic events, thus forming the framework for future risk-assessment of transgenic crops. 相似文献
90.
Peterson RW Dutton PL Wand AJ 《Protein science : a publication of the Protein Society》2004,13(3):735-751
Accurate prediction of the placement and comformations of protein side chains given only the backbone trace has a wide range of uses in protein design, structure prediction, and functional analysis. Prediction has most often relied on discrete rotamer libraries so that rapid fitness of side-chain rotamers can be assessed against some scoring function. Scoring functions are generally based on experimental parameters from small-molecule studies or empirical parameters based on determined protein structures. Here, we describe the NCN algorithm for predicting the placement of side chains. A predominantly first-principles approach was taken to develop the potential energy function incorporating van der Waals and electrostatics based on the OPLS parameters, and a hydrogen bonding term. The only empirical knowledge used is the frequency of rotameric states from the PDB. The rotamer library includes nearly 50,000 rotamers, and is the most extensive discrete library used to date. Although the computational time tends to be longer than most other algorithms, the overall accuracy exceeds all algorithms in the literature when placing rotamers on an accurate backbone trace. Considering only the most buried residues, 80% of the total residues tested, the placement accuracy reaches 92% for chi(1), and 83% for chi(1 + 2), and an overall RMS deviation of 1 A. Additionally, we show that if information is available to restrict chi(1) to one rotamer well, then this algorithm can generate structures with an average RMS deviation of 1.0 A for all heavy side-chains atoms and a corresponding overall chi(1 + 2) accuracy of 85.0%. 相似文献