首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65177篇
  免费   5627篇
  国内免费   28篇
  2022年   382篇
  2021年   916篇
  2020年   574篇
  2019年   672篇
  2018年   871篇
  2017年   820篇
  2016年   1430篇
  2015年   2516篇
  2014年   2631篇
  2013年   3498篇
  2012年   4445篇
  2011年   4434篇
  2010年   2887篇
  2009年   2569篇
  2008年   3726篇
  2007年   3795篇
  2006年   3581篇
  2005年   3619篇
  2004年   3526篇
  2003年   3343篇
  2002年   3282篇
  2001年   887篇
  2000年   704篇
  1999年   880篇
  1998年   934篇
  1997年   673篇
  1996年   682篇
  1995年   670篇
  1994年   649篇
  1993年   689篇
  1992年   672篇
  1991年   582篇
  1990年   505篇
  1989年   497篇
  1988年   501篇
  1987年   417篇
  1986年   422篇
  1985年   496篇
  1984年   522篇
  1983年   442篇
  1982年   524篇
  1981年   459篇
  1980年   402篇
  1979年   287篇
  1978年   347篇
  1977年   334篇
  1976年   292篇
  1975年   272篇
  1974年   286篇
  1973年   274篇
排序方式: 共有10000条查询结果,搜索用时 953 毫秒
171.
Abstract In many areas of the world, spider mites are significant pests of sugarcane. Australia is currently fortunate in lacking the most destructive species, and usually suffers only sporadic damage. Herein, we provide a key to the genera of spider mites associated with sugarcane, review the most significant genus, Oligonychus Berlese, and provide a key to the species of grass-feeding Oligonychus in the Australasian region. The species O. araneum Davis, O. digitatus Davis, O. grypus Baker and Pritchard, O. orthius Rimando, and O. oryzae (Hirst) are redescribed, while the Australian O. zanclopes sp. n. Beard and Walter from sugarcane and rice, O. turbelli sp. n. Beard and Walter, O. ephamnus sp. n. Beard and Walter and O. festucolus sp. n. Beard and Walter from other grasses, are newly described. Previous records of O. grypus in Australia appear to be misidentifications of what is described here as the new species O. zanclopes .  相似文献   
172.
Wandering Albatrosses Diomedea exulans are frequently killed when they attempt to scavenge baited hooks deployed by long-line fishing vessels. We studied the foraging ecology of Wandering Albatrosses breeding on Marion Island in order to assess the scale of interactions with known long-line fishing fleets. During incubation and late chick-rearing, birds foraged further away from the island, in warmer waters, and showed high spatial overlap with areas of intense tuna Thunnus spp. long-line fishing. During early chick-rearing, birds made shorter foraging trips and showed higher spatial overlap with the local Patagonian Toothfish Dissostichus eleginoides long-line fishery. Tracks of birds returning with offal from the Toothfish fishery showed a strong association with positions at which Toothfish long-lines were set and most diet samples taken during this stage contained fishery-related items. Independent of these seasonal differences, females foraged further from the islands and in warmer waters than males. Consequently, female distribution overlapped more with tuna long-line fisheries, whereas males interacted more with the Toothfish long-line fishery. These factors could lead to differences in the survival probabilities of males and females. Non-breeding birds foraged in warmer waters and showed the highest spatial overlap with tuna long-line fishing areas. The foraging distribution of Marion Island birds showed most spatial overlap with birds from the neighbouring Crozet Islands during the late chick-rearing and non-breeding periods. These areas of foraging overlap also coincided with areas of intense tuna long-line fishing south of Africa. As the population trends of Wandering Albatrosses at these two localities are very similar, it is possible that incidental mortality during the periods when these two populations show the highest spatial overlap could be driving these trends.  相似文献   
173.
The nephridium of the dwarf male of Bonellia viridis was investigated by means of transmission electron microscopy. The nephridium proved to be of a distinct protonephridial type and not a metanephridium as maintained in the older literature. The nephridium is composed of a ciliated duct that projects into the coelom. Five crown cells at the end of the duct function as terminal filtration cells. Each crown cell has a bundle of about 20 cilia, surrounded by a labyrinthic weir of cell processes that are presumably involved in filtration. The ciliary bundles enter the nephridial duct through perforations of the adjacent tubule cells. This finding of a protonephridium in a minute, coelomate animal that lacks a circulatory system corroborates a recently formulated functional theory on the distribution of nephridial types.  相似文献   
174.
The genetic relationships among New and Old World coregonid fishes were studied by electrophoresis. The genetic composition of 60 populations, representing perhaps nine commonly recognized species of Coregonus and Stenodus from Europe and North America was determined for 37 genetic loci. Six distinct genetic groups were evident. The first contained only populations of the inconnu, Stenodus leucichthys (Güldenstadt). The Nei genetic distance between Stenodus and Coregonus was 0.305, a relatively small value as compared to other salmonid inter-generic comparisons. The second genetic grouping contained the Arctic cisco, C. autumnalis (Pallas), the N. American lake cisco, C. artedii Lesueur, and the Irish pollan, C. autumnalis pollan Thompson. These three taxa appear to be conspecific on the basis of genetic distances. The third genetic grouping contained the European whitefish, C. lavaretus (L.), and the N. American lake whitefish, C. clupeaformis (Mitchill). European and lake whitefish may be conspecific. Lake whitefish from northwestern N. America were more closely related to European whitefish (genetic distance 0.038) than to lake whitefish from central N. America (genetic distance 0.098). The fourth group contained the broad whitefish, C. nasus (Pallas), which is perhaps more closely related to the European/lake whitefish groups than other coregonids. The fifth genetic grouping contained only the Asian endemic, C. peled (Gmelin), and the sixth contained the least cisco, C. sardinella Valenciennes, and vendace, C. albula (L.), which also appear to be conspecific. The widespread genetic groupings obtained for ciscoes indicate that they do not constitute a single closely related group within the genus Coregonus.  相似文献   
175.
176.
Cytokinesis in the coenocytic green alga Protosiphon botryoides (Kütz.) Klebs was studied with transmission electron microscopy. In vegetative cells, nuclei with associated basal bodies and dictyosomes are scattered throughout the cytoplasm. Mature cells may develop either multinucleate resting spores (coenocysts) or uninucleate zoospores. Cytokinesis may be preceded by contraction of the protoplast due to the disintegration of vacuoles that are present in larger, siphonous cells. The formation of coenocysts in ageing, siphonous cells, is signalled by cleavage of the chloroplast and the development of arrays of phycoplast microtubules in one or more transversely oriented planes through the cell. Nuclei with associated basal apparatuses stay dispersed throughout the cytoplasm; the basal bodies apparently are not involved in organization of the phycoplast. The plasma membrane invaginates, resulting in a centripetal cleavage of the protoplast into two or more multinucleate daughter protoplasts. Simultaneously, wall material is deposited along the outside of the daughter protoplasts by dictyosome-derived vesicles, and finally two or more thick-walled coenocysts are formed. The formation of zoospores, on the other hand, is signalled by clustering of the nuclei in one or more groups depending on the shape of the mother cell. The nuclei become arranged with the associated basal apparatuses facing toward the center of the cluster. Bundles of phycoplast microtubules develop between the nuclei, radiating from the center of a cluster toward the plasma membrane; basal apparatuses or associated structures apparently are involved in organization of the phycoplast. Cleavage furrows grow out centrifugally along these bundles of micro-tubules, fed by dictyosome-derived vesicles. No wall material is deposited. An additional mitotic division occurs during cleavage, and finally numerous uninucleate, wall-less, biflagellate zoospores are formed. The ultrastructural features of the two different types of cytoplasmic cleavage associated with two different types of daughter cells have not previously been reported for chlorophycean algae.  相似文献   
177.
Holthuisana transversa reabsorbs much of its exoskeletal calcium in the last 3 days before ecdysis and stores it in circulating granules in the haemocoel and in non-circulating granules in the subepidermal connective tissue. Calcium enters the epidermal cells from the moulting fluid, probably through their apical microvilli and is either incorporated into intracellular calcium granules or exits the cell via the basolateral membranes to be used in formation of two other granule types. Intracellular granules (0.4–2 μm long) form in large masses in the apical cytoplasm of the epidermal cells. They are formed as membrane-bound vesicles by the Golgi, and calcium and organic matrix material are added from the surrounding cytoplasm. As development proceeds, lamellae appear and calcium carbonate is deposited in the matrix. Granule masses move basally and are stored in the connective tissue. Calcium is also incorporated into extracellular large granules (0.8–3.8 μm long) which are formed in narrow intercellular channels between epidermal cells. A third granule type (small granules, 0.26 μm diameter) is formed in subepidermal connective tissue cells and released into the haemolymph in very large numbers. Calcium was identified in the two larger granule types using X-ray microanalysis and significant amounts of phosphorus and potassium were also present in the large granules. A model for ion cycling between the exoskeleton and granules is presented.  相似文献   
178.
179.
Healing the Modern in. Central Javanese City. Steve Ferzacca. Durham, NC: Carolina Academic Press, 2001. 280 pp.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号