首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60385篇
  免费   4934篇
  国内免费   31篇
  65350篇
  2022年   413篇
  2021年   854篇
  2020年   528篇
  2019年   638篇
  2018年   831篇
  2017年   771篇
  2016年   1358篇
  2015年   2393篇
  2014年   2513篇
  2013年   3336篇
  2012年   4236篇
  2011年   4243篇
  2010年   2755篇
  2009年   2441篇
  2008年   3531篇
  2007年   3592篇
  2006年   3392篇
  2005年   3419篇
  2004年   3355篇
  2003年   3150篇
  2002年   3116篇
  2001年   716篇
  2000年   540篇
  1999年   731篇
  1998年   865篇
  1997年   597篇
  1996年   602篇
  1995年   591篇
  1994年   572篇
  1993年   596篇
  1992年   537篇
  1991年   468篇
  1990年   391篇
  1989年   408篇
  1988年   403篇
  1987年   339篇
  1986年   340篇
  1985年   395篇
  1984年   444篇
  1983年   374篇
  1982年   459篇
  1981年   409篇
  1980年   364篇
  1979年   242篇
  1978年   297篇
  1977年   285篇
  1976年   231篇
  1975年   219篇
  1974年   238篇
  1973年   219篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Marine Crenarchaeota represent an abundant component of the oceanic microbiota that play an important role in the global nitrogen cycle. Here we report the association of the colonial ascidian Cystodytes dellechiajei with putative ammonia-oxidizing Crenarchaeota that could actively be involved in nitrification inside the animal tissue. As shown by 16S rRNA gene analysis, the ascidian-associated Crenarchaeota were phylogenetically related to Nitrosopumilus maritimus, the first marine archaeon isolated in pure culture that grows chemolithoautotrophically oxidizing ammonia to nitrite aerobically. Catalysed reporter deposition (CARD)-FISH revealed that the Crenarchaeota were specifically located inside the tunic tissue of the colony, where moreover the expression of amoA gene was detected. The amoA gene encodes the alpha-subunit of ammonia monooxygenase, which is involved in the first step of nitrification, the oxidation of ammonia to nitrite. Sequencing of amoA gene showed that they were phylogenetically related to amoA genes of N. maritimus and other putative ammonia-oxidizing marine Crenarchaeota. In order to track the suspected nitrification activity inside the ascidian colony under in vivo conditions, microsensor profiles were measured through the tunic tissue. Net NO(x) production was detected in the tunic layer 1200-1800 microm with rates of 58-90 nmol cm(-3) h(-1). Oxygen and pH microsensor profiles showed that the layer of net NO(x) production coincided with O(2) concentrations of 103-116 microM and pH value of 5.2. Together, molecular and microsensor data indicate that Crenarchaeota could oxidize ammonia to nitrite aerobically, and thus be involved in nitrification inside the ascidian tissue.  相似文献   
992.
The type I interferon (IFN) receptor plays a key role in innate immunity against viral and bacterial infections. Here, we show by intramolecular Förster resonance energy transfer spectroscopy that ligand binding induces substantial conformational changes in the ectodomain of ifnar1 (ifnar1-EC). Binding of IFNα2 and IFNβ induce very similar conformations of ifnar1, which were confirmed by single-particle electron microscopy analysis of the ternary complexes formed by IFNα2 or IFNβ with the two receptor subunits ifnar1-EC and ifnar2-EC. Photo-induced electron-transfer-based fluorescence quenching and single-molecule fluorescence lifetime measurements revealed that the ligand-induced conformational change in the membrane-distal domains of ifnar1-EC is propagated to its membrane-proximal domain, which is not involved in ligand recognition but is essential for signal activation. Temperature-dependent ligand binding studies as well as stopped-flow fluorescence experiments corroborated a multistep conformational change in ifnar1 upon ligand binding. Our results thus suggest that the relatively intricate architecture of the type I IFN receptor complex is designed to propagate the ligand binding event to and possibly even across the membrane by conformational changes.  相似文献   
993.
Invasion by the malaria merozoite depends on recognition of specific erythrocyte surface receptors by parasite ligands. Plasmodium falciparum uses multiple ligands, including at least two gene families, reticulocyte binding protein homologues (RBLs) and erythrocyte binding proteins/ligands (EBLs). The combination of different RBLs and EBLs expressed in a merozoite defines the invasion pathway utilized and could also play a role in parasite virulence. The binding regions of EBLs lie in a conserved cysteine-rich domain while the binding domain of RBL is still not well characterized. Here, we identify the erythrocyte binding region of the P. falciparum reticulocyte binding protein homologue 1 (PfRH1) and show that antibodies raised against the functional binding region efficiently inhibit invasion. In addition, we directly demonstrate that changes in the expression of RBLs can constitute an immune evasion mechanism of the malaria merozoite.  相似文献   
994.
Wnts are secreted glycoproteins that control vital biological processes, including embryogenesis, organogenesis and tumorigenesis. Wnts are classified into several subfamilies depending on the signaling pathways they activate, with the canonical subfamily activating the Wnt/beta-catenin pathway and the non-canonical subfamily activating a variety of other pathways, including the Wnt/calcium signaling and the small GTPase/c-Jun NH2-terminal kinase pathway. Wnts bind to a membrane receptor Frizzled and a co-receptor, the low-density lipoprotein receptor related protein. More recently, both canonical and non-canonical Wnts were shown to bind the Ror2 receptor tyrosine kinase. Ror2 is an orphan receptor that plays crucial roles in skeletal morphogenesis and promotes osteoblast differentiation and bone formation. Here we examine the effects of a canonical Wnt3a and a non-canonical Wnt5a on the signaling of the Ror2 receptor. We demonstrate that even though both Wnt5a and Wnt3a bound Ror2, only Wnt5a induced Ror2 homo-dimerization and tyrosine phosphorylation in U2OS human osteoblastic cells. Furthermore, Wnt5a treatment also resulted in increased phosphorylation of the Ror2 substrate, 14-3-3beta scaffold protein, indicating that Wnt5a binding causes activation of the Ror2 signaling cascade. Functionally, Wnt5a recapitulated the Ror2 activation phenotype, enhancing bone formation in the mouse calvarial bone explant cultures and potentiating osteoblastic differentiation of human mesenchymal stem cells. The effect of Wnt5a on osteoblastic differentiation was largely abolished upon Ror2 down-regulation. Thus we show that Wnt5a activates the classical receptor tyrosine kinase signaling cascade through the Ror2 receptor in cells of osteoblastic origin.  相似文献   
995.
The microtubule cytoskeleton is crucial for the internal organization of eukaryotic cells. Several microtubule-associated proteins link microtubules to subcellular structures. A subclass of these proteins, the plus end–binding proteins (+TIPs), selectively binds to the growing plus ends of microtubules. Here, we reconstitute a vertebrate plus end tracking system composed of the most prominent +TIPs, end-binding protein 1 (EB1) and CLIP-170, in vitro and dissect their end-tracking mechanism. We find that EB1 autonomously recognizes specific binding sites present at growing microtubule ends. In contrast, CLIP-170 does not end-track by itself but requires EB1. CLIP-170 recognizes and turns over rapidly on composite binding sites constituted by end-accumulated EB1 and tyrosinated α-tubulin. In contrast to its fission yeast orthologue Tip1, dynamic end tracking of CLIP-170 does not require the activity of a molecular motor. Our results demonstrate evolutionary diversity of the plus end recognition mechanism of CLIP-170 family members, whereas the autonomous end-tracking mechanism of EB family members is conserved.  相似文献   
996.
Euphorbia (Euphorbiaceae) comprises over 2150 species and is thus the second-largest genus of flowering plants. In Europe, it is represented by more than 100 species with highest diversity in the Mediterranean area; the majority of taxa belong to subgenus Esula Pers., including about 500 taxa. The few available phylogenetic studies yielded contrasting results regarding the monophyly of subg. Esula, and the phylogenetic relationships among its constituents remain poorly understood. We have sampled DNA sequences from the nuclear ribosomal internal transcribed spacer (ITS) and the plastid trnT-trnF region from about 100, predominantly European taxa of subg. Esula in order to infer its phylogenetic history. The plastid data support monophyly of subg. Esula whereas the ITS phylogeny, which is generally less resolved, is indecisive in this respect. Although some major clades have partly incongruent positions in the ITS and plastid phylogenies, the taxonomic content of the major terminal clades is congruent in both trees. As traditional sectional delimitations are largely not corroborated, an improved classification is proposed. Character state reconstruction illustrates that the annual life form developed independently several times in different clades of subgenus Esula from perennial ancestors, and that several morphological traits used in previous classifications of Euphorbia developed in parallel in different lineages.  相似文献   
997.
998.
Phylogenetic position of some free‐living litostomatean taxa has not been correctly determined because of long‐branch artifacts in 18S rRNA gene trees. The main aim of this study was to test the effectiveness of various masking algorithms, tree‐building techniques, binarization of DNA data as well as combining morphological and molecular data to eliminate long‐branch attraction of two problematic groups, helicoprorodontids and chaeneids. Guidance and SlowFaster masking in a combination with PhyloBayesian tree construction erased the artifactual positions of helicoprorodontids and chaeneids. On the other hand, binarization of DNA sequences and the strategy of combining morphological and molecular data eliminated only the artifactual position of chaeneids but not that of helicoprorodontids which were still being attracted by out‐group taxa. According to statistical tree topology tests and comparative morphological studies, helicoprorodontids are classified as a distinct order while chaeneids are considered to be fast evolving members of the order Lacrymariida. The high body contractility, “cephalization” of the anterior body end, and helicalization of the anterior portion of some or all somatic ciliary rows indicate relatedness of helicoprorodontids, chaeneids, and lacrymariids. On the other hand, the dorsal brush separated from the circumoral kinety by dense ciliary files supports kinships of chaeneids, lacrymariids, and didiniids.  相似文献   
999.
1000.
Biotransformations of 3-fluorophthalic acid have been investigated using blocked mutants of Pseudomonas testosteroni that are defective in the metabolism of phthalic acid (benzene-1,2-dicar-boxyfic acid). Mutant strains were grown with L-glutamic acid in the presence of 3-fluorophthalic acid as inducer of phthalic acid catabolic enzymes. Products that accumulated in the medium were isolated, purified and identified as the fluoroanalogues of those produced from phthalic acid by the same strains. The previously undescribed fluorochemicals cis-3-fluoro-4,5-dihydro-4,5-dihydroxyphthalic acid (VI) and 3-fluoro-4,5-dihydroxyphthalic acid (VII) have been obtained by biotransformation of 3-fluorophthalic acid, and 3-fluoro-5-hydroxyphthalic acid (X) from (VI) by freeze drying. In addition, samples of 2-fluoro-3,4-dihydroxybenzoic acid (2-fluoroprotocatechuic acid, VIII) and 3-fluoro-4,Sdi-hydroxybenzoic acid (5-fluoroprotocatechuic acid, IX) were obtained with a mutant deficient in the ring-fission enzyme, showing that the fluorine substituent in their precursor substrate (VII) is not recognized by the decarboxylase of the pathway, which shows no preference for which carboxyl group is removed. These studies of 3-fluorophthalic acid catabolism demonstrate the opportunities available for the production of novel fluorochemicals in reasonable yields by microbial transformations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号