首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   78篇
  498篇
  2024年   1篇
  2023年   6篇
  2022年   6篇
  2021年   7篇
  2020年   15篇
  2019年   8篇
  2018年   9篇
  2017年   8篇
  2016年   26篇
  2015年   23篇
  2014年   27篇
  2013年   35篇
  2012年   35篇
  2011年   37篇
  2010年   16篇
  2009年   17篇
  2008年   29篇
  2007年   10篇
  2006年   19篇
  2005年   21篇
  2004年   19篇
  2003年   17篇
  2002年   13篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   7篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   5篇
  1987年   13篇
  1986年   10篇
  1985年   6篇
  1984年   2篇
  1982年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有498条查询结果,搜索用时 15 毫秒
91.
New platforms allow quantification of gene expression from large, replicated experiments but current sampling protocols for plant tissue using immediate flash freezing in liquid nitrogen are a barrier to these high-throughput studies. In this study, we compared four sampling methods for RNA extraction for gene expression analysis: (1) the standard sampling method of flash freezing whole leaves in liquid nitrogen immediately upon removal from the plant; (2) incubation of excised leaf disks for 2 min at field temperature followed by flash freezing; (3) incubation of excised leaf disks for 1 h on ice followed by flash freezing; and (4) incubation of excised leaf disks for 1 h at field temperature followed by flash freezing. Gene expression analysis was done for 23 genes using nCounter, and normalization of the data was done using the geometric mean of five housekeeping genes. Quality of RNA was highest for protocol A and lowest for protocol D. Despite some differences in RNA quality, gene expression was not significantly different among protocols A, B, and C for any of the 23 genes. Expression of some genes was significantly different between protocol D and the other protocols. This study demonstrates that when sampling leaf disks for gene expression analysis, the time between tissue removal from the plant and flash freezing in liquid nitrogen can be extended. This increase in time allowable during sampling provides greater flexibility in sampling large replicated field experiments for statistical analysis of gene expression data.  相似文献   
92.
Mitogen and stress-activated kinase-1 (MSK1) is a serine/threonine protein kinase that is activated by either p38 or p42ERK MAPKs in response to stress or mitogenic extracellular stimuli. MSK1 belongs to a family of protein kinases that contain two distinct kinase domains in one polypeptide chain. We report the 1.8 A crystal structure of the N-terminal kinase domain of MSK1. The crystal structure reveals a unique inactive conformation with the ATP binding site blocked by the nucleotide binding loop. This inactive conformation is stabilized by the formation of a new three-stranded beta sheet on the N lobe of the kinase domain. The three beta strands come from residues at the N terminus of the kinase domain, what would be the alphaB helix in the active conformation, and the activation loop. The new three-stranded beta sheet occupies a position equivalent to the N terminus of the alphaC helix in active protein kinases.  相似文献   
93.
The analysis of the X-ray structures of two xanthine inhibitors bound to PEPCK and a comparison to the X-ray structure of GTP bound to PEPCK are reported. The SAR at N-1, N-7 and developing SAR at C-8 are consistent with information gained from the X-ray structures of compounds 1 and 2 bound to PEPCK. Representative N-3 modifications of compound 2 that led to the discovery of 3-cyclopropylmethyl and its carboxy analogue as optimal N-3 groups are presented.  相似文献   
94.
There is a need for accurate predictions of ecosystem carbon (C) and water fluxes in field conditions. Previous research has shown that ecosystem properties can be predicted from community abundance-weighted means (CWM) of plant functional traits and measures of trait variability within a community (FDvar). The capacity for traits to predict carbon (C) and water fluxes, and the seasonal dependency of these trait-function relationships has not been fully explored. Here we measured daytime C and water fluxes over four seasons in grasslands of a range of successional ages in southern England. In a model selection procedure, we related these fluxes to environmental covariates and plant biomass measures before adding CWM and FDvar plant trait measures that were scaled up from measures of individual plants grown in greenhouse conditions. Models describing fluxes in periods of low biological activity contained few predictors, which were usually abiotic factors. In more biologically active periods, models contained more predictors, including plant trait measures. Field-based plant biomass measures were generally better predictors of fluxes than CWM and FDvar traits. However, when these measures were used in combination traits accounted for additional variation. Where traits were significant predictors their identity often reflected seasonal vegetation dynamics. These results suggest that database derived trait measures can improve the prediction of ecosystem C and water fluxes. Controlled studies and those involving more detailed flux measurements are required to validate and explore these findings, a worthwhile effort given the potential for using simple vegetation measures to help predict landscape-scale fluxes.  相似文献   
95.
Mouse embryo imaging is conventionally carried out on ex vivo embryos excised from the amniotic sac, omitting vital structures and abnormalities external to the body. Here, we present an in amnio MR imaging methodology in which the mouse embryo is retained in the amniotic sac and demonstrate how important embryonic structures can be visualised in 3D with high spatial resolution (100 µm/px). To illustrate the utility of in amnio imaging, we subsequently apply the technique to examine abnormal mouse embryos with abdominal wall defects. Mouse embryos at E17.5 were imaged and compared, including three normal phenotype embryos, an abnormal embryo with a clear exomphalos defect, and one with a suspected gastroschisis phenotype. Embryos were excised from the mother ensuring the amnion remained intact and stereo microscopy was performed. Embryos were next embedded in agarose for 3D, high resolution MRI on a 9.4T scanner. Identification of the abnormal embryo phenotypes was not possible using stereo microscopy or conventional ex vivo MRI. Using in amnio MRI, we determined that the abnormal embryos had an exomphalos phenotype with varying severities. In amnio MRI is ideally suited to investigate the complex relationship between embryo and amnion, together with screening for other abnormalities located outside of the mouse embryo, providing a valuable complement to histology and existing imaging methods available to the phenotyping community.  相似文献   
96.
97.
It is increasingly commonly suggested that grasslands are a perpetual sink for carbon, and that just maintaining grasslands will yield a net carbon sink. I examine the evidence for this from repeated soil surveys, long term grassland experiments and simple mass balance calculations. I conclude that it is untenable that grasslands act as a perpetual carbon sink, and the most likely explanation for observed grassland carbon sinks over short periods is legacy effects of land use and land management prior to the beginning of flux measurement periods. Simply having grassland does not result is a carbon sink, but judicious management or previously poorly managed grasslands can increase the sink capacity. Given that grasslands are a large store of carbon, and that it is easier and faster for soils to lose carbon that it is for them to gain carbon, it is an important management target to maintain these stocks.  相似文献   
98.
A library prepared from flow-sorted chromosomes was used to isolate single-copy sequences from chromosome seven. One such sequence 7C22 has been shown to be polymorphic for an EcoRI restriction site and to be informative for the study of CF in approximately 35% of matings. The segregation of the 7C22 alleles was followed through nineteen informative families with more than one child affected by cystic fibrosis. We report that the locus for 7C22 is linked to the locus for cystic fibrosis at a recombination fraction of 0.045. This marker will prove useful in improving the accuracy and informativeness of prenatal diagnosis and in constructing a fine genetic map around the cystic fibrosis gene.  相似文献   
99.
Escherichia coli O157:H7, the most common serotype of enterohemorrhagic E. coli (EHEC), is responsible for numerous food-borne and water-borne infections worldwide. An integrating waveguide biosensor is described for the detection of water-borne E. coli O157, based on a fluorescent sandwich immunoassay performed inside a glass capillary waveguide. The genomic DNA of captured E. coli O157 cells was extracted and quantitative real-time PCR subsequently performed to assess biosensor-capture efficiency. In vitro microbial growth in capillary waveguide is also documented. The biosensor allows for quantitative detection of as few as 10 cells per capillary (0.075 ml volume) and can be used in conjunction with cell amplification, PCR and microarray technologies to positively identify a pathogen.  相似文献   
100.
Requirements for mitigation of the continued increase in greenhouse gas (GHG ) emissions are much needed for the North China Plain (NCP ). We conducted a meta‐analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N2O was the main component of the area‐scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH , and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP . The N2O emissions increased exponentially with mineral fertilizer N application rate, with =  0.2389e0.0058x for wheat season and =  0.365e0.0071x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha?1 for wheat and maize, respectively) exhibited great potential for reducing N2O emissions, by 0.39 (29%) and 1.71 (56%) kg N2O‐N ha?1 season?1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N2O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no‐tillage significantly reduced N2O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no‐tillage practice. Straw incorporation significantly increased annual N2O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号