首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   0篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2013年   7篇
  2012年   6篇
  2011年   1篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1979年   2篇
  1973年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
61.
Eukaryotic members of the ClC family of chloride channels and transporters are composed of a transmembrane ion transport domain followed by a cytoplasmic domain, which is believed to be involved in the modulation of ClC function. In some family members this putative regulatory domain contains next to a well-folded structured part, long sequence stretches with low sequence complexity. These regions, a 96 residue long linker connecting two structured sub-domains, and 35 residues on the C teminus of the domain were found disordered in a recent crystal structure of this domain in ClC-0. Both regions have a large influence on the modulation of channel function in closely related family members. Here we describe a NMR study to characterize the structural and dynamic properties of these putatively unstructured stretches. Our study reveals that the two regions indeed show large conformational flexibility with dynamics on the nanosecond timescale. However, small islands of secondary structure are found interdispersed between the unfolded regions. This study characterizes for the first time the biophysical properties of these protein segments, which may become important for the understanding of novel regulatory mechanisms within the ClC family.  相似文献   
62.
Spatial structures of proteolytic segment A (sA) of bacterioopsin of H. halobium (residues 1-36) solubilized in a mixture of methanol-chloroform (1:1), 0.1 M LiClO4 organic mixture, or in perdeuterated sodium dodecyl sulfate (SDS) micelles, were determined by 2D 1H-NMR techniques. 324 and 400 NOESY cross-peak volumes were measured in NOESY spectra of sA in organic mixture and SDS micelles, respectively. The sA spatial structures were determined by local structure analysis, distance geometry calculation with program DIANA and systematic search for energetically allowed side chain rotamers consistent with NOESY cross-peak volumes. The structures of sA are similar in both milieus and have the right-handed alpha-helical region from Pro8 to Met32 with root mean square deviation (RMSD) of 0.25 A between backbone heavy atoms and fit well with Pro8 to Met32 alpha-helical region in electron cryo-microscopy model of bacteriorhodopsin. The N-terminal region Ala2-Gly6 of sA in organic mixture has a fixed structure of two consecutive gamma-turns as 2 * 2(7)-helix (RMSD of 0.25 A) stabilized by the Thr5 NH...O = C Gln3 and Ile4 NH...O = C Ala2 hydrogen bonds while this region in SDS micelles has disordered structure with RMSD of 1.44 A for backbone heavy atoms. The C-terminal region Gly33-Asp36 of sA is disordered in both milieus. Torsion angles chi 1 of sA were unequivocally determined for 13 (SDS) and 11 (organic mixture) of alpha-helical residues and are identical in both milieus.  相似文献   
63.
The neural apparatus of the perirenal and parapancreatic fat tissue has been studied in human embryos, fetuses and newborns. Neurohistological techniques of Bielshowsky--Gross, Bielschowsky--Boek, Rasskazova and Ranson have been used . During embryogenesis certain differences are being formed in the structure of neural elements. These differences are characteristic for mature specimens and are especially noticeable in the structure of receptor terminals and ganglia. The neural apparatus of the paranephric fat tissue is forming with greater speed. Neural elements in different parts of the perirenal and parapancreatic fat tissue are not evenly distributed. Their greatest concentration is noted behind the pancreatic head and tail and at the level of the renal inferior pole and hilus.  相似文献   
64.
The fungus Cochliobolus carbonum causes leaf spot disease of maize. Highly virulent isolates of the pathogen produce a host-selective, peptide toxin that is active against susceptible genotypes of maize. Prior to infection, spores must germinate and differentiate appressoria, structures specialized for leaf penetration. Analysis of spore germination fluids by plasma desorption mass spectrometry, which allowed detection of as little as 0.5 ng toxin, revealed that spores induced to form appressoria in vitro synthesized and released the toxin at a time coincident with maturation of appressoria. Spores incubated under conditions that did not induce appressorium formation failed to produce toxin. These observations indicate that synthesis of the host-selective toxin, which is essential for successful pathogenesis of maize by C. carbonum, is regulated by infection-related morphogenesis.  相似文献   
65.
Spatial structures of proteolytic segment A (sA) of bacterioopsin of Halobacterium halobium (residues 1-36) solubilized in the mixture of methanol-chloroform (1:1), 0.1 M LiClO4 or in perdeuteriated sodium dodecyl sulfate (SDS) micelles, were determined by 2D 1H-NMR techniques. Most of the resonances in 1H-NMR spectra of fragment A were assigned using DQF-COSY, TOCSY and NOESY spectra. Deuterium exchange rates for amide protons were measured in series of NOESY spectra. 324 and 400 NOESY cross-peak volumes were measured in NOESY spectra of sA in mixture of organic solvents and SDS micelles, respectively. The sA structure was determined by local structure analysis, distance geometry calculation with program DIANA and systematic search for energetically allowed side chain rotamers consistent with NOESY cross-peak volumes. The structures of sA are similar in both milieus. These structures have the right-handed alpha-helical region from Pro-8 to Met-32 with root mean square deviation (RMSD) of 0.25 A between back bone heavy atoms and fit well with Pro-8 to Met-32 alpha-helical region in electron cryo-microscopy (ECM) model of bacteriorhodopsin [4]. The C-terminal region Gly-33-Asp-36 is disordered in both milieus, while N-terminal region Ala-2-Gly-6 in organic solvents has a fixed structure (RMSD of 0.25 A) stabilized by the Thr-5 NH...O=C Gln-3 and Ile-4 NH...O = C Ala-2 hydrogen bonds. This region of sA in SDS micelles has disordered structure with RMSD of 1.44 A for back bone heavy atoms. Torsion angles chi 1 of sA were unequivocally determined for 72% of side chains in the alpha-helical region and are identical in both milieus.  相似文献   
66.
67.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号