首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   453篇
  免费   35篇
  国内免费   2篇
  2023年   3篇
  2022年   7篇
  2021年   16篇
  2020年   7篇
  2019年   15篇
  2018年   11篇
  2017年   14篇
  2016年   13篇
  2015年   12篇
  2014年   23篇
  2013年   35篇
  2012年   41篇
  2011年   33篇
  2010年   27篇
  2009年   25篇
  2008年   31篇
  2007年   29篇
  2006年   32篇
  2005年   26篇
  2004年   24篇
  2003年   11篇
  2002年   9篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有490条查询结果,搜索用时 31 毫秒
21.
We examine the similarities and differences between two widely used knowledge-based potentials, which are expressed as contact matrices (consisting of 210 elements) that gives a scale for interaction energies between the naturally occurring amino acid residues. These are the Miyazawa-Jernigan contact interaction matrix M and the potential matrix S derived by Skolnick J et al., 1997, Protein Sci 6:676-688. Although the correlation between the two matrices is good, there is a relatively large dispersion between the elements. We show that when Thr is chosen as a reference solvent within the Miyazawa and Jernigan scheme, the dispersion between the M and S matrices is reduced. The resulting interaction matrix B gives hydrophobicities that are in very good agreement with experiment. The small dispersion between the S and B matrices, which arises due to differing reference states, is shown to have dramatic effect on the predicted native states of lattice models of proteins. These findings and other arguments are used to suggest that for reliable predictions of protein structures, pairwise additive potentials are not sufficient. We also establish that optimized protein sequences can tolerate relatively large random errors in the pair potentials. We conjecture that three body interaction may be needed to predict the folds of proteins in a reliable manner.  相似文献   
22.
23.
In a SAR study, we have synthesized a few 1H-pyrazole carboxylate related microbicides using Vilsmeier reagent. The anti-microbial screening results of 1H-pyrazole-3-carboxylate are reported here for the first time. The effect of 1H-pyrazole carboxylates on the mycelial growth of plant pathogenic fungi is revealed. The first X-ray structure in the family of microbicidal 1H-pyrazole-4-carboxylates is presented.  相似文献   
24.
Eosinophilia in blood and tissues has been strongly associated with helminth infections for over a century. In vivo depletion of IL-5, a cytokine crucially involved in eosinophilopoiesis with an antibody or through genetic manipulation, reproducibly abrogates helminth-induced eosinophilia, but renders mice permissive only in some models of parasite infection. In the current study, we compared the ability of IL-5(-/-) and B6(+/+) mice to clear intraperitoneal infections with Brugia pahangi L3. IL-5(-/-) mice had statistically significantly higher worm burdens than B6(+/+). This was true for primary infections, in young as well as old mice, suggesting that IL-5 deficient mice are more permissive to Brugian infections. This increase in permissiveness seemed to correlate well with the drastically reduced eosinophil numbers in the peritoneal cavity, the site of infection. In secondary infections, primed IL-5(-/-) mice cleared infections in an accelerated manner, comparable with B6(+/+) mice. These observations suggest that IL-5 induced eosinophilia is more important in the control of a primary infection in na?ve mice than a secondary infection in primed mice.  相似文献   
25.
The activity of the Alzheimer's amyloid beta-peptide is a sensitive function of the peptide's sequence. Increased fibril elongation rate of the E22Q Dutch mutant of the Alzheimer's amyloid beta-peptide relative to that of the wild-type peptide has been observed. The increased activity has been attributed to a larger propensity for the formation of beta structure in the monomeric E22Q mutant peptide in solution relative to the WT peptide. That hypothesis is tested using four nanosecond timescale simulations of the WT and Dutch mutant forms of the Abeta(10-35)-peptide in aqueous solution. The simulation results indicate that the propensity for formation of beta-structure is no greater in the E22Q mutant peptide than in the WT peptide. A significant measure of "flickering" of helical structure in the central hydrophobic cluster region of both the WT and mutant peptides is observed. The simulation results argue against the hypothesis that the Dutch mutation leads to a higher probability of formation of beta-structure in the monomeric peptide in aqueous solution. We propose that the greater stability of the solvated WT peptide relative to the E22Q mutant peptide leads to decreased fibril elongation rate in the former. Stability difference is due to the differing charge state of the two peptides. The other proposal leads to the prediction that the fibril elongation rates for the WT and the mutant E22Q should be similar under acid conditions.  相似文献   
26.
Protein engineering experiments and Phi(F)-value analysis of SH3 domains reveal that their transition state ensemble (TSE) is conformationally restricted, i.e. the fluctuations in the transition state (TS) structures are small. In the TS of src SH3 and alpha-spectrin SH3 the distal loop and the associated hairpin are fully structured, while the rest of the protein is relatively disordered. If native structure predominantly determines the folding mechanism, the findings for SH3 folds raise the question: What are the features of the native topology that determine the nature of the TSE? We propose that the presence of stiff loops in the native state that connect local structural elements (such as the distal hairpin in SH3 domains) conformationally restricts TSE. We validate this hypothesis using the simulations of a "control" system (16 residue beta-hairpin forming C-terminal fragment of the GBl protein) and its variants. In these fragments the role of bending rigidity in determining the nature of the TSE can be directly examined without complications arising from interactions with the rest of the protein. The TSE structures in the beta-hairpins are determined computationally using cluster analysis and limited Phi(F)-value analysis. Both techniques prove that the conformational heterogeneity decreases as the bending rigidity of the loop increases. To extend this finding to SH3 domains a measure of bending rigidity based on loop curvature, which utilizes native structures in the Protein Data Bank (PDB), is introduced. Using this measure we show that, with few exceptions, the ordering of stiffness of the distal, n-src, and RT loops in the 29 PDB structures of SH3 domains is conserved. Combining the simulation results for beta-hairpins and the analysis of PDB structures for SH3 domains, we propose that the stiff distal loop restricts the conformational fluctuations in the TSE. We also predict that constraining the distal loop to be preformed in the denatured ensemble should not alter the nature of TSE. On the other hand, if the amino and carboxy terminals are cross-linked to form a circular polypeptide chain, the pathways and TSs are altered. These contrasting scenarios are illustrated using simulations of cross-linked WT beta-hairpin fragments. Computations of bending rigidities for immunoglobulin-like domain proteins reveal no clear separation in the stiffness of their loops. In the beta-sandwich proteins, which have large fractions of non-local native contacts, the nature of the TSE cannot be apparently determined using purely local structural characteristics. Nevertheless, the measure of loop stiffness still provides qualitative predictions of the ordered regions in the TSE of Ig27 and TenFn3.  相似文献   
27.
Maximizing RNA folding rates: a balancing act   总被引:1,自引:1,他引:0       下载免费PDF全文
Large ribozymes typically require very long times to refold into their active conformation in vitro, because the RNA is easily trapped in metastable misfolded structures. Theoretical models show that the probability of misfolding is reduced when local and long-range interactions in the RNA are balanced. Using the folding kinetics of the Tetrahymena ribozyme as an example, we propose that folding rates are maximized when the free energies of forming independent domains are similar to each other. A prediction is that the folding pathway of the ribozyme can be reversed by inverting the relative stability of the tertiary domains. This result suggests strategies for optimizing ribozyme sequences for therapeutics and structural studies.  相似文献   
28.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   
29.
This study was designed to evaluate the effect of phytohormones on plant regeneration from epicotyl and hypocotyl explants of two groundnut (Arachis hypogaea) cultivars. Explants cultured on media with auxins and in combination with cytokinin produced high frequency of callus. After four weeks, callus from these cultures was transferred to medium with cytokinin and reduced auxin, shoot buds regenerated from the cultures. A high rate of shoot bud regeneration was observed on medium supplemented with 2.0 mg/L BAP and 0.5 mg/L NAA. Among the different auxins tested, NAA was found to be most effective, producing the highest frequency of shoot buds per responding cultures. Of the two explants tested, epicotyl was found to be best for high frequency shoot bud regeneration. Multiple shoots arose on MS medium supplemented with BAP or kinetin (1.0–5.0 mg/L) plus IBA (1.0 mg/L), with maximum production occurring at 5.0 mg/L. The elongated shoots developed rootsin vitro upon transfer to MS medium supplemented with NAA or IBA (0.5–2.0 mg/L) and kinetin (0.5 mg/L) for 15 days.In vitro produced plantlets, were transferred to soil and placed in a glasshouse developed successfully, matured, and set seeds.  相似文献   
30.
Escherichia coli dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate. During the catalytic cycle, DHFR undergoes conformational transitions between the closed (CS) and occluded (OS) states that, respectively, describe whether the active site is closed or occluded by the Met20 loop. The CS→OS and the reverse transition may be viewed as allosteric transitions. Using a sequence-based approach, we identify a network of residues that represents the allostery wiring diagram. Many of the residues in the allostery wiring diagram, which are dispersed throughout the adenosine-binding domain as well as the loop domain, are not conserved. Several of the residues in the network have been previously shown by NMR experiments, mutational studies, and molecular dynamics simulations to be linked to equilibration conformational fluctuations of DHFR. To further probe the nature of events that occur during conformational fluctuations, we use a self-organized polymer model to monitor the kinetics of the CS→OS and the reverse transitions. During the CS→OS transition, coordinated changes in a number of residues in the loop domain enable the Met20 loop to slide along the α-helix in the adenosine-binding domain. Sliding is triggered by pulling of the Met20 loop by the βG-βH loop and the pushing action of the βG-βH loop. The residues that facilitate the Met20 loop motion are part of the network of residues that transmit allosteric signals during the CS→OS transition. Replacement of M16 and G121, whose Cα atoms are about 4.3 Å in the CS, by a disulfide cross-link impedes that CS→OS transition. The order of events in the OS→CS transition is not the reverse of the forward transition. The contact Glu18-Ser49 in the OS persists until the sliding of the Met20 loop is nearly complete. The ensemble of structures in the transition state in both the allosteric transitions is heterogeneous. The most probable transition-state structure resembles the OS (CS) in the CS→OS (OS→CS) transition, which is in accord with the Hammond postulate. Structures resembling the OS (CS) are present as minor (∼ 1-3%) components in equilibrated CS (OS) structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号