首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   10篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   9篇
  2013年   4篇
  2012年   15篇
  2011年   12篇
  2010年   12篇
  2009年   8篇
  2008年   11篇
  2007年   10篇
  2006年   14篇
  2005年   2篇
  2004年   10篇
  2003年   8篇
  2002年   5篇
  2001年   1篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   2篇
  1924年   1篇
排序方式: 共有170条查询结果,搜索用时 484 毫秒
91.
Filamins (FLNs) are large, multidomain actin cross-linking proteins with diverse functions. Besides regulating the actin cytoskeleton, they serve as important links between the extracellular matrix and the cytoskeleton by binding cell surface receptors, functioning as scaffolds for signaling proteins, and binding several other cytoskeletal proteins that regulate cell adhesion dynamics. Structurally, FLNs are formed of an amino terminal actin-binding domain followed by 24 immunoglobulin-like domains (IgFLNs). Recent studies have demonstrated that myosin-mediated contractile forces can reveal hidden protein binding sites in the domain pairs IgFLNa18–19 and 20–21, enabling FLNs to transduce mechanical signals in cells. The atomic structures of these mechanosensor domain pairs in the resting state are known, as well as the structures of individual IgFLN21 with ligand peptides. However, little experimental data is available on how interacting protein binding deforms the domain pair structures. Here, using small-angle x-ray scattering-based modelling, x-ray crystallography, and NMR, we show that the adaptor protein migfilin-derived peptide-bound structure of IgFLNa20–21 is flexible and adopts distinctive conformations depending on the presence or absence of the interacting peptide. The conformational changes reported here may be common for all peptides and may play a role in the mechanosensor function of the site.  相似文献   
92.
The activity of ornithine decarboxylase, the key enzyme in the synthesis of polyamines, is essential for proliferation and differentiation of all living cells. Two inhibitors of ornithine decarboxylase, α-difluoromethylornithine (DFMO) and 1-aminooxy-3-aminopropane (APA), caused swelling of endoplasmic reticulum (ER) and medial and trans Golgi cisternae, and the disappearance of stress fibers, as visualized by staining with fluorescent concanavalin A (ConA), C6-NBD-ceramide or wheat germ agglutinin (WGA), and phalloidin, respectively. In contrast, the pattern of microtubules, stained with a β-tubulin antibody, was not affected. Rough ER seemed to be especially affected in polyamine deprivation forming whorls and involutions, which were observed by transmission electron microscopy. Since ER and Golgi apparatus are vital parts of the glycosylation and secretory machinery of the cell, we tested the ability of these structurally altered cell organelles to synthesize proteoglycans using [3H]glucosamine and [35S]sulfate as precursors. The total incorporation rate into proteoglycans and hyaluronan was not reduced in polyamine-deprived cells, suggesting that the total glycosylation capacity of cells was not affected. However, the synthesis of a high molecular weight proteoglycan containing chondroitin and keratan sulfate was completely inhibited. The remodeling of cytoskeleton and rough endoplasmic reticulum in polyamine deprivation may perturb the synthesis and secretion of the components of membrane skeleton and of the extracellular matrix, e.g., proteoglycans. Rough ER and cytoskeleton may be the targets where polyamines affect cell proliferation and differentiation. J. Cell Biochem. 66:165-174, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
93.
94.
OBJECTIVES: Oxidative stress (OS) is an essential element in the pathogenesis of Barrett’s esophagus (BE) and its transformation to adenocarcinoma (EAC). The state of OS in the proximal stomach of patients with BE and EAC is unknown. Isoprostanes are a specific marker of OS not previously used to determine OS from BE/EAC tissue samples. PATIENTS AND METHODS: OS was measured in 42 patients with BE (n = 9), EAC (n = 9), or both (n = 24) and 15 control patients. A STAT-8-Isoprostane EIA Kit served to identify 8-Isoprostanes (8-IP), and a Glutathione Assay Kit was used to measure glutathione reduced form (GSH) and glutathione oxidized form. An OxiSelect Oxidative DNA Damage ELISA Kit (8-OHdG) served to measure 8-OH-deoxyguanosine. RESULTS: The 8-IP (P = .039) and 8-OHdG (P = .008) levels were higher, and the GSH level lower (P = .031), in the proximal stomach of the study group than in that of the controls. Helicobacter pylori infection was present in 8% of the study patients. CONCLUSIONS: In the proximal stomach of BE and EAC patients, OS was elevated and antioxidative capacity was reduced. This finding suggests that the gastroesophageal reflux causing BE also induces oxidative stress in the proximal stomach and may contribute to the development of cancer in the proximal stomach and gastric cardia.  相似文献   
95.

Background

Genome-wide association studies (GWASs) have identified a large number of variants (SNPs) associating with an increased risk of coronary artery disease (CAD). Recently, the CARDIoGRAM consortium published a GWAS based on the largest study population so far. They successfully replicated twelve already known associations and discovered thirteen new SNPs associating with CAD. We examined whether the genetic profiling of these variants improves prediction of subclinical atherosclerosis – i.e., carotid intima-media thickness (CIMT) and carotid artery elasticity (CAE) – beyond classical risk factors.

Subjects and Methods

We genotyped 24 variants found in a population of European ancestry and measured CIMT and CAE in 2001 and 2007 from 2,081, and 2,015 subjects (aged 30–45 years in 2007) respectively, participating in the Cardiovascular Risk in Young Finns Study (YFS). The Bogalusa Heart Study (BHS; n = 1179) was used as a replication cohort (mean age of 37.5). For additional replication, a sub-sample of 5 SNPs was genotyped for 1,291 individuals aged 46–76 years participating in the Health 2000 population survey. We tested the impact of genetic risk score (GRS24SNP/CAD) calculated as a weighted (by allelic odds ratios for CAD) sum of CAD risk alleles from the studied 24 variants on CIMT, CAE, the incidence of carotid atherosclerosis and the progression of CIMT and CAE during a 6-year follow-up.

Results

CIMT or CAE did not significantly associate with GRS24SNP/CAD before or after adjusting for classical CAD risk factors (p>0.05 for all) in YFS or in the BHS. CIMT and CAE associated with only one SNP each in the YFS. The findings were not replicated in the replication cohorts. In the meta-analysis CIMT or CAE did not associate with any of the SNPs.

Conclusion

Genetic profiling, by using known CAD risk variants, should not improve risk stratification for subclinical atherosclerosis beyond conventional risk factors among healthy young adults.  相似文献   
96.
97.
Extensive resonance overlap exacerbates assignment of intrinsically disordered proteins (IDPs). This issue can be circumvented by utilizing 15N, 13C′ and 1HN spins, where the chemical shift dispersion is mainly dictated by the characteristics of consecutive amino acid residues. Especially 15N and 13C′ spins offer superior chemical shift dispersion in comparison to 13Cα and 13Cβ spins. However, HN-detected experiments suffer from exchange broadening of amide proton signals on IDPs especially under alkali conditions. To that end, we propose here two novel HA-detected experiments, (HCA)CON(CA)H and (HCA)NCO(CA)H and a new assignment protocol based on panoply of unidirectional HA-detected experiments that enable robust backbone assignment of IDPs also at high pH. The new approach was tested at pH 6.5 and pH 8.5 on cancer/testis antigen CT16, a 110-residue IDP, and virtually complete backbone assignment of CT16 was obtained by employing the novel HA-detected experiments together with the previously introduced iH(CA)NCO scheme. Remarkably, also those 10 N-terminal residues that remained unassigned in our earlier HN-detection based assignment approach even at pH 6.5 were now readily assigned. Moreover, theoretical calculations and experimental results suggest that overall sensitivity of the new experiments is also applicable to small or medium sized globular proteins that require alkaline conditions.  相似文献   
98.
Detailed molecular phenotyping gives insight into disease mechanisms and can individualize medical practice for improved risk assessment and treatment. We show in an epidemiological study (n = 4309) that the multi-metabolic profiles obtained by serum NMR metabonomics inherently associate with the extent of atherosclerosis already in preclinical stages. Data-driven analysis of the spectral profiles of healthy, young adults revealed three distinct metabolic phenotypes associated with high carotid intima-media thickness (IMT), a surrogate marker of cardiovascular disease. The phenotypes were characterized by varying combinations of well-known metabolic disturbances like elevated VLDL and LDL and low HDL levels. Low IMT was also associated with distinct metabolic phenotypes with lipoprotein as well as other biochemical characteristics partly opposing those found for the high IMT phenotypes. Profiles of low-molecular-weight metabolites quantified from the experimentation were also characteristic for the metabolic phenotypes and substantiate developments toward the use of multi-metabolic risk phenotypes. The methodology can be taken as a direct extension for the routine analytics used for the risk assessment of atherosclerosis; quantification of metabolites will complement and might even replace conventional lipid measurements. Serum NMR metabonomics is therefore anticipated as a rational option for comprehensive cardiovascular risk assessment.  相似文献   
99.
Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect.  相似文献   
100.
Mobility is a key factor determining lepidopteran species responses to environmental change. However, direct multispecies comparisons of mobility are rare and empirical comparisons between butterflies and moths have not been previously conducted. Here, we compared mobility between butterflies and diurnal moths and studied species traits affecting butterfly mobility. We experimentally marked and released 2011 butterfly and 2367 moth individuals belonging to 32 and 28 species, respectively, in a 25 m × 25 m release area within an 11‐ha, 8‐year‐old set‐aside field. Distance moved and emigration rate from the release habitat were recorded by species. The release experiment produced directly comparable mobility data in 18 butterfly and 9 moth species with almost 500 individuals recaptured. Butterflies were found more mobile than geometroid moths in terms of both distance moved (mean 315 m vs. 63 m, respectively) and emigration rate (mean 54% vs. 17%, respectively). Release habitat suitability had a strong effect on emigration rate and distance moved, because butterflies tended to leave the set‐aside, if it was not suitable for breeding. In addition, emigration rate and distance moved increased significantly with increasing body size. When phylogenetic relatedness among species was included in the analyses, the significant effect of body size disappeared, but habitat suitability remained significant for distance moved. The higher mobility of butterflies than geometroid moths can largely be explained by morphological differences, as butterflies are more robust fliers. The important role of release habitat suitability in butterfly mobility was expected, but seems not to have been empirically documented before. The observed positive correlation between butterfly size and mobility is in agreement with our previous findings on butterfly colonization speed in a long‐term set‐aside experiment and recent meta‐analyses on butterfly mobility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号