首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   10篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   9篇
  2013年   4篇
  2012年   15篇
  2011年   12篇
  2010年   12篇
  2009年   8篇
  2008年   11篇
  2007年   10篇
  2006年   14篇
  2005年   2篇
  2004年   10篇
  2003年   8篇
  2002年   5篇
  2001年   1篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   2篇
  1924年   1篇
排序方式: 共有170条查询结果,搜索用时 31 毫秒
31.
We review the relationship between molecular interactions and the properties of lipid environments. A specific focus is given on bilayers which contain sphingomyelin (SM) and sterols due to their essential role for the formation of lipid rafts. The discussion is based on recent atom-scale molecular dynamics simulations, complemented by extensive comparison to experimental data. The discussion is divided into four sections. The first part investigates the properties of one-component SM bilayers and compares them to bilayers with phosphatidylcholine (PC), the focus being on a detailed analysis of the hydrogen bonding network in the two bilayers. The second part deals with binary mixtures of sterols with either SM or PC. The results show how the membrane properties may vary substantially depending on the sterol and SM type available, the membrane order and interdigitation being just two of the many examples of this issue. The third part concentrates on the specificity of intermolecular interactions in three-component mixtures of SM, PC and cholesterol (CHOL) under conditions where the concentrations of SM and CHOL are dilute with respect to that of PC. The results show how SM and CHOL favor one another, thus acting as nucleation sites for the formation of highly ordered nanosized domains. Finally, the fourth part discusses the large-scale properties of raft-like membrane environments and compares them to the properties of non-raft membranes. The differences turn out to be substantial. As a particularly intriguing example of this, the lateral pressure profiles of raft-like and non-raft systems indicate that the lipid composition of membrane domains may have a major impact on membrane protein activation.  相似文献   
32.
MreB, MreC and MreD are essential cell shape-determining morphogenetic proteins in Gram-positive and in Gram-negative bacteria. While MreB, the bacterial homologue of the eukaryotic cytoskeletal protein actin, has been extensively studied, the roles of MreC and MreD are less well understood. They both are transmembrane proteins. MreC has a predicted single transmembrane domain and the C-terminal part outside the cell membrane. MreC probably functions as a link between the intracellular cytoskeleton and the cell wall synthesizing machinery which is located at the outer surface of the cell membrane. Also proteins involved in cell wall synthesis participate in cell morphogenesis. How these two processes are coordinated is, however, poorly understood. Bacillus subtilis (BS), a non-pathogenic Gram-positive bacterium, is widely used as a model for Gram-positive pathogens, e.g. Staphylococcus aureus (SA). Currently, the structures of MreC from BS and SA are not known. As part of our efforts to elucidate the structure–function relationships of the morphogenetic protein complexes in Gram-positive bacteria, we present the backbone and side chain resonance assignments of the extracytoplasmic domain of MreC from BS.  相似文献   
33.
A nucleic acid spot hybridization assay was used to detect Chlamydia trachomatis DNA. The hybridization probes included DNA isolated from elementary bodies of lymphogranuloma venereum (LGV) strains and cloned fragments of both chromosomal and plasmid DNA. The sensitivity of the test was in the range 10 to 100 pg homologous DNA and 10 in vitro infected cells. Cross-reactivity with bacterial DNA was avoided when purified chlamydia-specific DNA fragments were used as probes. C. trachomatis was detectable in most of the clinical specimens with large amounts of infectious particles. Also some isolation-negative specimens gave a positive signal in the test.  相似文献   
34.
35.
Turnover rates of sulphated saccharides in the gastrointestinal tract of the rat were estimated with the aid of [35S]sulphate. Two long (16 and 33 days) and three short (3–3.5 days) experiments were made. Entities containing carbohydrate were isolated from the glandular stomach, upper, middle and lower parts of the small intestine and the colon. For comparison, glycosaminoglycans from costal cartilage (chondroitin 4(6)-sulphates) and from skin (dermatan sulphate) were isolated in two of the short experiments.It was noted that, in the gastrointestinal tract, there were large amounts of saccharides which originally belonged to the group of epithelial glycoproteins. These saccharides were composed principally of D-glucosamine, D-galactosamine, L-fucose, D-galactose, sialic acid and sulphate and some also contained D-mannose, D-glucose, L-arabinose and D-xylose, but no uronic acids were detected. The sulphated forms of saccharides were separated from neutral forms by anion-exchange chromatography, and their turnover rates were estimated. The biological half-lives were very short, approximately 14–24 h. The apparent reason for this is that they were secreted into the gut, and in this case the half-life merely reflects the secretion rate of a polysaccharide.In the gastrointestinal tract were also found typical connective tissue polysaccharides, which contain uronic acid, such as hyaluronic acid, heparan sulphate, chondroitin 4-sulphate and dermatan sulphate. The results of the long experiments indicated that the loss of sulphate from the polysaccharides was not constant. The biological half-lives varied considerably, depending on the period of time after sulphate injection during which the estimations were performed. On the other hand, the results of the short experiments indicated that sulphation of polysaccharides begins immediately after the injection of sulphate, and maximal labelling was usually achieved 6–8 h after sulphate injection. Thereafter there were periods of fast decrease in the radioactivity of polysaccharides and periods of slower decrease or even increase in radioactivity. The turnover rates of chondroitin 4-sulphate in costal cartilage and of dermatan sulphate in the skin were also estimated, and similar phenomena were observed. The results were similar in all three experiments.It is difficult to explain these findings. There may be diurnal variations in the rate of biosynthesis of polysaccharides. There may be metabolic heterogenity due to the occurrence of different pools of subjected glycosaminoglycans. Finally the sulphate moieties may metabolise independently of the complete macromolecules to which they are attached.  相似文献   
36.
Filamins are large actin-binding and cross-linking proteins which act as linkers between the cytoskeleton and various signaling proteins. Filamin A (FLNa) is the most abundant of the three filamin isoforms found in humans. FLNa contains an N-terminal actin-binding domain and 24 immunoglobulin-like (Ig) domains. The Ig domains are responsible for the FLNa dimerization and most of the interactions that FLNa has with numerous other proteins. There are several crystal and solution structures from isolated single Ig domains of filamins in the PDB database, but only few from longer constructs. Here, we present nearly complete chemical shift assignments of FLNa tandem Ig domains 16–17 and 18–19. Chemical shift mapping between FLNa tandem Ig domain 16–17 and isolated domain 17 suggests a novel domain–domain interaction mode.  相似文献   
37.
The paradigm of biological membranes has recently gone through a major update. Instead of being fluid and homogeneous, recent studies suggest that membranes are characterized by transient domains with varying fluidity. In particular, a number of experimental studies have revealed the existence of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL). These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins. However, despite the proposed importance of these domains, their properties, and even the precise nature of the lipid phases, have remained open issues mainly because the associated short time and length scales have posed a major challenge to experiments. In this work, we employ extensive atom-scale simulations to elucidate the properties of ternary raft mixtures with CHOL, palmitoylsphingomyelin (PSM), and palmitoyloleoylphosphatidylcholine. We simulate two bilayers of 1,024 lipids for 100 ns in the liquid-ordered phase and one system of the same size in the liquid-disordered phase. The studies provide evidence that the presence of PSM and CHOL in raft-like membranes leads to strongly packed and rigid bilayers. We also find that the simulated raft bilayers are characterized by nanoscale lateral heterogeneity, though the slow lateral diffusion renders the interpretation of the observed lateral heterogeneity more difficult. The findings reveal aspects of the role of favored (specific) lipid-lipid interactions within rafts and clarify the prominent role of CHOL in altering the properties of the membrane locally in its neighborhood. Also, we show that the presence of PSM and CHOL in rafts leads to intriguing lateral pressure profiles that are distinctly different from corresponding profiles in nonraft-like membranes. The results propose that the functioning of certain classes of membrane proteins is regulated by changes in the lateral pressure profile, which can be altered by a change in lipid content.  相似文献   
38.
F-spondin is a protein mainly associated with neuronal development. It attaches to the extracellular matrix and acts in the axon guidance of the developing nervous system. F-spondin consists of eight domains, six of which are TSR domains. The TSR domain family binds a wide range of targets. Here we present the NMR solution structures of TSR1 and TSR4. TSR domains have an unusual fold that is characterized by a long, nonglobular shape, consisting of two beta-strands and one irregular extended strand. Three disulfide bridges and stack of alternating tryptophan and arginine side-chains stabilize the structure. TSR1 and TSR4 structures are similar to each other and to the previously determined TSR domain X-ray structures from another protein, TSP, although TSR4 exhibits a mobile loop not seen in other structures.  相似文献   
39.
Chemical shift assignment of methyl-containing residues is essential in protein NMR spectroscopy, as these residues are abundant in protein interiors and provide the vast majority of long-range NOE connectivities for structure determination. These residues also constitute an integral part of hydrophobic cavities, the surroundings for many enzymatic reactions. Here we present a powerful strategy for the assignment of methyl-containing residues in a uniformly 13C/15N double labeled protein sample. The approach is based on novel four-dimensional HCCmHm-TOCSY experiments, two of them utilizing gradient selection and sensitivity enhancement in all three indirectly detected dimensions. Regardless of the number of dimensions, the proposed experiments can be executed using only one transient per FID, providing outstanding resolution and sensitivity. A complete assignment of the 51 methyl-containing residues in the 16 kDa Mus musculus coactosin was accomplished using a four-dimensional HCCmHm-TOCSY spectrum recorded in 16 hours.  相似文献   
40.
Myotilin is a 57 kDa actin-binding and -bundling protein that consists of a unique serine-rich amino-terminus, two Ig-domains and a short carboxy-terminus with a PDZ-binding motif. Myotilin localizes in sarcomeric Z-discs, where it interacts with several sarcomeric proteins. Point mutations in myotilin cause muscle disorders morphologically highlighted by sarcomeric disarray and aggregation. The actin-binding and dimerization propensity of myotilin has been mapped to the Ig-domains. Here we present high-resolution structure of the first Ig-domain of myotilin (MyoIg1) determined with solution state NMR spectroscopy. Nearly complete chemical shift assignments of MyoIg1 were achieved despite several missing backbone 1H-15N-HSQC signals. The structure derived from distance and dihedral angle restraints using torsion angle dynamics was further refined using molecular dynamics. The structure of MyoIg1 exhibits I-type Ig-fold. The absence of several backbone 1H-15N-HSQC signals can be explained by conformational exchange taking place at the hydrophobic core of the protein. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号