首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   15篇
  247篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2017年   1篇
  2015年   9篇
  2014年   6篇
  2013年   12篇
  2012年   9篇
  2011年   8篇
  2010年   3篇
  2009年   7篇
  2008年   8篇
  2007年   8篇
  2006年   10篇
  2005年   7篇
  2004年   16篇
  2003年   17篇
  2002年   18篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1998年   6篇
  1997年   10篇
  1996年   6篇
  1995年   7篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1967年   1篇
  1966年   3篇
  1961年   2篇
排序方式: 共有247条查询结果,搜索用时 15 毫秒
21.
22.
A Potamogeton hybrid recently discovered in Finland was proven to be a new taxon, which has a different parentage than the most similar P.×vepsicus (=P. natans×praelongus) described from Russia. Based on molecular and morphological investigation, the new hybrid was identified as P. alpinus×natans and is here described as P.×exilis nothosp. nov. The hybrid is known only from several nearby localities in a single river system. All discovered colonies almost certainly originate from a single hybridization event that occurred in the upper part of the river system. Other localities downstream have been established through fragmentation and dispersal of stems and rhizomes of this sterile hybrid. A detailed morphological comparison of the new hybrid with similar hybrids and species is provided.  相似文献   
23.
The interactions between phytoplankton and zooplankton were studied in two large lakes in the Saimaa lake system, Finland. Both are subjected to substantial waste water loading, and exhibit a clear trophic gradient between the loaded and unloaded areas. The phytoplankton and zooplankton were compared in terms of composition, abundance and biomass at 34–39 stations located in different parts of the lakes. At least four mechanisms were thought to affect the composition of plankton communities: (1) the amount of nutrients (trophic gradient), (2) grazing of algae by herbivores, (3) the effect of the algal species composition on feeding by zooplankters (large, colonial algae in the more loaded parts of the lakes) and (4) the regeneration and reorganization of nutrients.  相似文献   
24.
The oxidative modification of lipoprotein particles is an important step in atherogenesis. Estrogens are known to be powerful antioxidants independently of their binding to the estrogen receptors and the hormonal functions. We explored the structural determinants for the antioxidant activity of a large number of estrogen derivatives (n=43) in an aqueous lipoprotein solution in vitro by monitoring formation of conjugated dienes. Our results indicate that estrogen derivatives with an unsubstituted A-ring phenolic hydroxyl group with one or two adjacent methoxy groups provide strongest antioxidant protection of low density lipoprotein (LDL) and high density lipoprotein (HDL). The electron donating methoxy groups may enhance the antioxidant effect by weakening the phenolic OH bond and providing stability to the formed phenoxyl radical. With some exceptions, compounds completely lacking unsubstituted hydroxyl groups in the A-ring exhibited no antioxidant effect, e.g. the most hydrophilic "tetrol" compound with three unsubstituted A-ring hydroxyl groups had no antioxidant effect. Moreover, additional hydroxyl groups in the B-, C- or D-ring seemed to weaken the antioxidant effect. Accordingly, both the presence of unsubstituted hydroxyl groups and adjacent substituents, as well as the lipophilicity of the derivatives determine the antioxidant activity of estrogen derivatives in aqueous lipoprotein solutions.  相似文献   
25.
Neph3 (filtrin) is a membrane protein expressed in the glomerular epithelial cells (podocytes), but its role in the glomerulus is still largely unknown. To characterize the function of Neph3 in the glomerulus, we employed the zebrafish as a model system. Here we show that the expression of neph3 in pronephros starts before the onset of nephrin and podocin expression, peaks when the nephron primordium differentiates into glomerulus and tubulus, and is then downregulated upon glomerular maturation. By histology, we found that neph3 is specifically expressed in pronephric podocytes at 36 hpf. Furthermore, disruption of neph3 expression by antisense morpholino oligonucleotides results in distorted body curvature and transient pericardial edema, the latter likely reflecting perturbation of glomerular osmoregulatory function. Histological analysis of neph3 morphants reveals altered glomerular morphology and dilated pronephric tubules. The phenotype of neph3 morphants, curved body and pericardial edema, is rescued by wild-type zebrafish neph3 mRNA. In addition to glomerulus, neph3 is highly expressed in the developing brain and specific regions of mature midbrain and hindbrain. In line with this, neph3 morphants show aberrant brain morphology. Collectively, the expression of neph3 in glomerulus and brain together with the morphant phenotype imply that neph3 is a pleiotropic gene active during distinct stages of tissue differentiation and associates directly in the regulation of both glomerular and neural development.  相似文献   
26.
Methane (CH4) and nitrous oxide (N2O) dynamics were studied in a boreal Sphagnum fuscum pine bog receiving annually (from 1991 to 1996) 30 or 100 kg NH4NO3-N ha–1. The gas emissions were measured during the last three growing seasons of the experiment. Nitrogen treatment did not affect the CH4 fluxes in the microsites where S. fuscum and S. angustifolium dominated. However, addition of 100 kg NH4NO3-N ha–1 yr–1 increased the CH4 emission from those microsites dominated by S. fuscum. This increase was associated with the increase in coverage of cotton grass (Eriophorum vaginatum) induced by the nitrogen treatment. The differences in the CH4 emissions were not related to the CH4 oxidation and production potentials in the peat profiles. The N2O fluxes were negligible from all microsites. Only minor short-term increases occurred after the nitrogen addition.  相似文献   
27.
28.
29.
Interest in climate change effects on groundwater has increased dramatically during the last decade. The mechanisms of climate‐related groundwater depletion have been thoroughly reviewed, but the influence of global warming on groundwater‐dependent ecosystems (GDEs) remains poorly known. Here we report long‐term water temperature trends in 66 northern European cold‐water springs. A vast majority of the springs (82%) exhibited a significant increase in water temperature during 1968–2012. Mean spring water temperatures were closely related to regional air temperature and global radiative forcing of the corresponding year. Based on three alternative climate scenarios representing low (RCP2.6), intermediate (RCP6) and high‐emission scenarios (RCP8.5), we estimate that increase in mean spring water temperature in the region is likely to range from 0.67 °C (RCP2.6) to 5.94 °C (RCP8.5) by 2086. According to the worst‐case scenario, water temperature of these originally cold‐water ecosystems (regional mean in the late 1970s: 4.7 °C) may exceed 12 °C by the end of this century. We used bryophyte and macroinvertebrate species data from Finnish springs and spring‐fed streams to assess ecological impacts of the predicted warming. An increase in spring water temperature by several degrees will likely have substantial biodiversity impacts, causing regional extinction of native, cold‐stenothermal spring specialists, whereas species diversity of headwater generalists is likely to increase. Even a slight (by 1 °C) increase in water temperature may eliminate endemic spring species, thus altering bryophyte and macroinvertebrate assemblages of spring‐fed streams. Climate change‐induced warming of northern regions may thus alter species composition of the spring biota and cause regional homogenization of biodiversity in headwater ecosystems.  相似文献   
30.
Carbon fluxes from a tropical peat swamp forest floor   总被引:3,自引:0,他引:3  
A tropical ombrotrophic peatland ecosystem is one of the largest terrestrial carbon stores. Flux rates of carbon dioxide (CO2) and methane (CH4) were studied at various peat water table depths in a mixed‐type peat swamp forest floor in Central Kalimantan, Indonesia. Temporary gas fluxes on microtopographically differing hummock and hollow peat surfaces were combined with peat water table data to produce annual cumulative flux estimates. Hummocks formed mainly from living and dead tree roots and decaying debris maintained a relatively steady CO2 emission rate regardless of the water table position in peat. In nearly vegetation‐free hollows, CO2 emission rates were progressively smaller as the water table rose towards the peat surface. Methane emissions from the peat surface remained small and were detected only in water‐saturated peat. By applying long‐term peat water table data, annual gas emissions from the peat swamp forest floor were estimated to be 3493±316 g CO2 m?2 and less than 1.36±0.57 g CH4 m?2. On the basis of the carbon emitted, CO2 is clearly a more important greenhouse gas than CH4. CO2 emissions from peat are the highest during the dry season, when the oxic peat layer is at its thickest because of water table lowering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号