首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   18篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2017年   1篇
  2015年   10篇
  2014年   8篇
  2013年   15篇
  2012年   12篇
  2011年   10篇
  2010年   4篇
  2009年   8篇
  2008年   11篇
  2007年   8篇
  2006年   12篇
  2005年   9篇
  2004年   16篇
  2003年   18篇
  2002年   19篇
  2001年   5篇
  2000年   4篇
  1999年   6篇
  1998年   6篇
  1997年   10篇
  1996年   7篇
  1995年   7篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   7篇
  1988年   4篇
  1986年   4篇
  1985年   2篇
  1984年   6篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1971年   1篇
  1967年   1篇
  1966年   4篇
  1961年   2篇
排序方式: 共有297条查询结果,搜索用时 203 毫秒
91.
The timing of the commencement of photosynthesis (P*) in spring is an important determinant of growing‐season length and thus of the productivity of boreal forests. Although controlled experiments have shed light on environmental mechanisms triggering release from photoinhibition after winter, quantitative research for trees growing naturally in the field is scarce. In this study, we investigated the environmental cues initiating the spring recovery of boreal coniferous forest ecosystems under field conditions. We used meteorological data and above‐canopy eddy covariance measurements of the net ecosystem CO2 exchange (NEE) from five field stations located in northern and southern Finland, northern and southern Sweden, and central Siberia. The within‐ and intersite variability for P* was large, 30–60 days. Of the different climate variables examined, air temperature emerged as the best predictor for P* in spring. We also found that ‘soil thaw’, defined as the time when near‐surface soil temperature rapidly increases above 0°C, is not a useful criterion for P*. In one case, photosynthesis commenced 1.5 months before soil temperatures increased significantly above 0°C. At most sites, we were able to determine a threshold for air‐temperature‐related variables, the exceeding of which was required for P*. A 5‐day running‐average temperature (T5) produced the best predictions, but a developmental‐stage model (S) utilizing a modified temperature sum concept also worked well. But for both T5 and S, the threshold values varied from site to site, perhaps reflecting genetic differences among the stands or climate‐induced differences in the physiological state of trees in late winter/early spring. Only at the warmest site, in southern Sweden, could we obtain no threshold values for T5 or S that could predict P* reliably. This suggests that although air temperature appears to be a good predictor for P* at high latitudes, there may be no unifying ecophysiological relationship applicable across the entire boreal zone.  相似文献   
92.
93.
Fluxes of N2O,CH4 and CO2 on afforested boreal agricultural soils   总被引:3,自引:0,他引:3  
After drainage of natural boreal peatlands, the decomposition of organic matter increases and peat soil may turn into a net source of CO2 and N2O, whereas CH4 emission is known to decrease. Afforestation is a potential mitigation strategy to reduce greenhouse gas emission from organic agricultural soils. A static chamber technique was used to evaluate the fluxes of CH4, N2O and CO2 from three boreal organic agricultural soils in western Finland, afforested 1, 6 or 23 years before this study. The mean emissions of CH4 and N2O during the growing seasons did not correlate with the age of the tree stand. All sites were sources of N2O. The highest daily N2O emission during the growing season, measured in the oldest site, was as high as 29 mg N2O m–2d–1. In general, organic agricultural soils are sinks for methane. Here, the oldest site acted as a small sink for methane, whereas the two youngest afforested organic soils were sources for methane with maximum emission rates (up to 154 mg m–2d–1) similar to those reported for minerogenous natural peatlands. Soil respiration rates decreased with the age of the forest. The high soil respiration in the younger sites, probably resulted from the high biomass production of herbs, could create soil anaerobiosis and increase methane production. Our results show that afforestation of agricultural peat soils does not abruptly terminate the N2O emissions during the first two decades, and afforestation can even enhance methane emission for a few years. The carbon accumulation in the developing tree stand can partly compensate the carbon loss from soil.  相似文献   
94.
The effects of oxygen conditions and temperature on dynamics of greenhousegases (CH4, CO2, N2O) and nutrients(NH4 +, NO2 +NO3 , tot-P) were studied in sediment of hyper-eutrophic LakeKevätön, Finland. Undisturbed sediment cores were incubated at 6, 11,16, and 23 °C in a laboratory microcosm using a continuouswater flowtechnique with an oxic or anoxic water flow. The production of CO2increased with increasing temperature in both oxic (Q10 3.2 ±0.6) and anoxic (Q10 2.3 ± 0.4) flows. The release ofCH4 increased with temperature in anoxic conditions (Q102.3 ± 0.2), but was negligible with the oxic flow at all temperatures.The release of NH4 + increased with temperature with the oxic and anoxic flows(Q10 2.4 ± 0.1). There was a net production of NO2 , NO3 and N2O with the oxic flow at temperatures below16 °C. The release of phosphorus was greater from the anoxicsediments and increased with temperature with both the anoxic (Q102.9 ± 0.5) and oxic (Q10 1.9 ± 0.1) flows. It isprobable that the temperature of boreal lakes and the associated oxygendeficiency will increase as the climate becomes warmer. Our experiments showedthat this change would increase the global warming potential of greenhousegasesreleased from sediments of eutrophic lakes predominately attributable to theincrease in the CH4 production. Furthermore, warming would alsoaccelerate the eutrophication of lakes by increasing release of phosphorus andmineral nitrogen from sediments, which further enhance CH4productionin sediments.  相似文献   
95.
96.
Phytoplankton in the small central Finnish lake, Vasikkalampi, was studied over a two-year period by weekly sampling simultaneously with monitoring of physical and chemical properties of water, solar radiation energy and zooplankton. In the present paper, the fluctuations in phytoplankton diversity were studied in relation to environmental factors. The special aim for the study was to detect a relation between environmental disturbances and phytoplankton diversity.  相似文献   
97.
Abstract Using aerobic soil slurry technique nitrification and nitrous oxide production were studied in samples from a pine site in Western Finland. The site received atmospheric ammonium deposition of 7–33 kg N ha−1 a−1 from a mink farm. The experiments with soil slurries showed that the nitrification potential in the litter layer was higher at pH 6 than at pH 4. However, the nitrification potentials in the samples from the organic and mineral horizons at pH 6 and 4 were almost equal. Also N2O was produced at a higher rate at pH 6 than at pH 4 in slurries of the litter layer samples. The reverse was true for samples from the organic and mineral horizons. The highest N2O production and nitrification rates were measured in the suspensions of litter layer samples. Nitrification activity in field-moist soil samples was lower than the activity in the slurries indicating that the availability of ammonium limited nitrification in these soils. Acetylene (2.5 kPa) retarded nitrification activity (70-–100%) and N2O production (40 – 90%) in soil slurries. Acetylene inhibited the N2O production by 40–60% during the first 3 days after its addition to field-moist samples incubated in aerobic atmosphere. After 3 days the inhibition became much lower (4–5%). The results indicate that, in soil profiles of boreal coniferous forests receiving ammonium deposition, chemolithotrophic nitrification may have importance in the N2O production, and that changes in soil pH affect differently nitrification as well as N2O production in litter and deeper soil layers.  相似文献   
98.
We recently assigned a gene for autosomal recessive cornea plana congenita (CNA2; MIM No. 217300) by linkage analysis to the approximately 3-cM interval between markers D12S82 and D12S327. Here, we extended these studies by exploiting the haplotype and linkage disequilibrium information that can be derived from the genetically isolated Finnish population and its subpopulations. By testing 32 independent families with 10 polymorphic markers in the CNA2 interval, strong allelic association between CNA2 and a set of markers with a peak at marker D12S351 was detected. Based on linkage disequilibrium analysis, the critical region for CNA2 could be narrowed to only 0.04-0.3 cM from marker D12S351, thus defining a critical interval 0.08-0.60 cM in length. These results provide a basis for highly focused positional cloning of CNA2.  相似文献   
99.
Biological and chemical data were processed to estimate trophic stage and degree of pollution in several streams and rivers in southern Poland. The majority were eutrophic and some of them heavily polluted; only a few were oligo-mesotrophic. The differences in the water quality of the rivers were reflected by different types of diatom community and also by the values for some diatom indices, which were calculated using the latest version of the 'Omnidia' database software. Except for the Sládeček's index, all diatom indices correlated significantly with organic load (COD), oxygen concentration, conductivity and most of the measured ions. Some indices showed a significant negative correlation with trophic level (expressed by NH4-N and PO4-P). In general, IPS (Specific Pollution Sensitivity Index) and GDI (Generic Diatom Index) indices gave the best results. Among the investigated diatom communities, only a few taxa indicated oligo-mesotrophy and oligo-β-mesosaprobity. Most of the sites were characterised by a greater relative contribution of eutraphent and tolerant ones as well as α-mesosaprobic and polysaprobic diatoms. This study suggests that the structure of benthic diatom communities and diatom indices, especially GDI, can be applied for monitoring rivers in Poland. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
100.
Abstract. As an example of ecological gradient analysis, Gaussian response functions, with Poisson or quasi-Poisson error distribution, were fitted for diatom taxa on a pH gradient. It is possible to predict or infer the pH of lake water from the fitted curves using the method of maximum likelihood, which is easily implemented in standard non-linear regressionprograms. Due to overdis-persion with respect to the Poisson distribution, moment estimates forthe negative binomial distribution were also applied, both in estimating the species response curves and in prediction. Simulations indicated that the theoretical maximum precision (measuredby standard deviation of prediction errors) in our data set was 0.17 pH units. The observed errors were much greater (SD 0.35 to 0.43). It seems that roughly equal proportions of the excess error were caused (1) by systematic differences between the training (estimation) data and the validation (prediction) data, and (2) from a misspecified model. It is suggested that the error due to model misspecification consists of inadequacy of the presumed error distribution and of inadequacy of the simple Gaussian response function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号