首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   33篇
  316篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   8篇
  2019年   1篇
  2018年   6篇
  2017年   8篇
  2016年   18篇
  2015年   37篇
  2014年   27篇
  2013年   34篇
  2012年   8篇
  2011年   6篇
  2010年   18篇
  2009年   25篇
  2008年   7篇
  2007年   7篇
  2006年   5篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   6篇
  2001年   1篇
  2000年   5篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
  1971年   2篇
  1967年   1篇
  1958年   1篇
排序方式: 共有316条查询结果,搜索用时 15 毫秒
71.
Summary The growth and development of white spruce somatic embryos was followed from the filamentous immature to the mature cotyledonary embryo stage. Histochemical examination of the various stages of embryo development showed that lipids, proteins, and polysaccharides were produced to varying degrees during the process. During early stages (1 to 2 wk on ABA), mostly polysaccharide was produced, whereas during later stages, polysaccharides, lipids, and protein accumulated. Electron microscopy indicated that lipid deposition in somatic embryos started during the first week after transfer to ABA-containing medium. Deposition of the storage products began at the basal end of the embryonal mass and within the proximal zone of the suspensors. Accumulation continued to the peripheral regions and then inward toward the cortex of the developing embryo. In all cases, polysaccharide accumulated first, followed by lipid and lastly, protein. Quantitatively, cotyledonary stage somatic embryos had less lipid and protein and more starch when compared to zygotic embryos at the same developmental stage. Total protein profiles elucidated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the majority of proteins were similar in zygotic and somatic embryos. Prominent protein bands were found at 30, 20, 19.5, 15, 14.4, 12, and 10 Kd. However, protein bands at 40, 15, and 12 Kd in total protein from somatic embryos were either absent or highly underexpressed.  相似文献   
72.
Variation among individuals is a prerequisite of evolution by natural selection. As such, identifying the origins of variation is a fundamental goal of biology. We investigated the link between gene interactions and variation in gene expression among individuals and species using the mammalian limb as a model system. We first built interaction networks for key genes regulating early (outgrowth; E9.5–11) and late (expansion and elongation; E11-13) limb development in mouse. This resulted in an Early (ESN) and Late (LSN) Stage Network. Computational perturbations of these networks suggest that the ESN is more robust. We then quantified levels of the same key genes among mouse individuals and found that they vary less at earlier limb stages and that variation in gene expression is heritable. Finally, we quantified variation in gene expression levels among four mammals with divergent limbs (bat, opossum, mouse and pig) and found that levels vary less among species at earlier limb stages. We also found that variation in gene expression levels among individuals and species are correlated for earlier and later limb development. In conclusion, results are consistent with the robustness of the ESN buffering among-individual variation in gene expression levels early in mammalian limb development, and constraining the evolution of early limb development among mammalian species.  相似文献   
73.
Bioresorbable electronic materials serve as foundations for implantable devices that provide active diagnostic or therapeutic function over a timeframe matched to a biological process, and then disappear within the body to avoid secondary surgical extraction. Approaches to power supply in these physically transient systems are critically important. This paper describes a fully biodegradable, monocrystalline silicon photovoltaic (PV) platform based on microscale cells (microcells) designed to operate at wavelengths with long penetration depths in biological tissues (red and near infrared wavelengths), such that external illumination can provide realistic levels of power. Systematic characterization and theoretical simulations of operation under porcine skin and fat establish a foundational understanding of these systems and their scalability. In vivo studies of a representative platform capable of generating ≈60 µW of electrical power under 4 mm of porcine skin and fat illustrate an ability to operate blue light‐emitting diodes (LEDs) as subdermal implants in rats for 3 d. Here, the PV system fully resorbs after 4 months. Histological analysis reveals that the degradation process introduces no inflammatory responses in the surrounding tissues. The results suggest the potential for using silicon photovoltaic microcells as bioresorbable power supplies for various transient biomedical implants.  相似文献   
74.
Many autotrophs vary their allocation to nutrient uptake in response to environmental cues, yet the dynamics of this plasticity are largely unknown. Plasticity dynamics affect the extent of single versus multiple nutrient limitation and thus have implications for plant ecology and biogeochemical cycling. Here we use a model of two essential nutrients cycling through autotrophs and the environment to determine conditions under which different plastic or fixed nutrient uptake strategies are adaptive. Our model includes environment-independent costs of being plastic, environment-dependent costs proportional to the rate of plastic change, and costs of being mismatched to the environment, the last of which is experienced by both fixed and plastic types. In equilibrium environments, environment-independent costs of being plastic select for tortoise strategies—fixed or less plastic types—provided that they are sufficiently close to co-limitation. At intermediate levels of environmental fluctuation forced by periodic nutrient inputs, more hare-like plastic strategies prevail because they remain near co-limitation. However, the fastest is not necessarily the best. The most adaptive strategy is an intermediate level of plasticity that keeps pace with environmental fluctuations, but is not faster. At high levels of environmental fluctuation, the environment-dependent cost of changing rapidly to keep pace with the environment becomes prohibitive and tortoise strategies again dominate. The existence and location of these thresholds depend on plasticity costs and rate, which are largely unknown empirically. These results suggest that the expectations for single nutrient limitation versus co-limitation and therefore biogeochemical cycling and autotroph community dynamics depend on environmental heterogeneity and plasticity costs.  相似文献   
75.
Regulatory mechanisms of betacyanin biosynthesis in suspension cultures of Phytolacca americana and anthocyanin in Vitis sp. were investigated in relation to cell division activity.Betacyanin biosynthesis in Phytolacca cells clearly shows a positive correlation with cell division, as the peak of betacyanin accumulation was observed at the log phase of batch cultures. Incorporation of radioactivity from labelled tyrosine into betacyanin also showed a peak at early log phase. Aphidicolin, an inhibitor of DNA synthesis, and propyzamide, an antimicrotubule drug, reduced betacyanin accumulation and inhibited the incorporation of radioactivity from labelled tyrosine into betacyanin at concentrations which were inhibitory to cell division. Both inhibitors reduced the incorporation of radioactivity from labelled tyrosine to 3,4-dihydroxyphenylalanine (DOPA), but the incorporation of labelled DOPA into betacyanin was not affected. These results suggest that the conversion of tyrosine to DOPA is coupled with cell division activity.In contrast, the anthocyanin accumulation in Vitis cells showed a negative correlation with cell division. Accumulation occurred at the stationary phase in batch cultures when cell division ceased. Aphidicolin or reduced phosphate concentration induced a substantial increase in anthocyanin accumulation as well as the inhibition of cell division. Chalcone synthase (CHS) activity increased at the time of anthocyanin accumulation. Northern blotting analysis indicated that changes in CHS mRNA levels corresponded to similar changes in enzymatic activity. The pool size of endogenous phenylalanine was low during active cell division, but increased before anthocyanin began to accumulate and concomitantly with increasing levels of CHS mRNA. Exogenous supply of phenylalanine at the time of low endogenous levels induced the elevation of CHS mRNA and anthocyanin accumulation. These results indicate that the elevation of endogenous phenylalanine levels, when cell division ceases, may cause the increase in CHS mRNA levels, resulting in increased CHS activity and subsequently in anthocyanin accumulation in Vitis suspension cultures.Abbreviations CHS chalcone synthase - CHFI chalcone flavanone isomerase - DOPA 3,4-dihydroxyphenylalanine - PAL phenylalanine ammonia lyase  相似文献   
76.
Astroviruses (AstVs) are positive sense, single-stranded RNA viruses transmitted to a wide range of hosts via the fecal-oral route. The number of AstV-infected animal hosts has rapidly expanded in recent years with many more likely to be discovered because of the advances in viral surveillance and next generation sequencing. Yet no study to date has identified human AstV genotypes in animals, although diverse AstV genotypes similar to animal-origin viruses have been found in children with diarrhea and in one instance of encephalitis. Here we provide important new evidence that non-human primates (NHP) can harbor a wide variety of mammalian and avian AstV genotypes, including those only associated with human infection. Serological analyses confirmed that >25% of the NHP tested had antibodies to human AstVs. Further, we identified a recombinant AstV with parental relationships to known human AstVs. Phylogenetic analysis suggests AstVs in NHP are on average evolutionarily much closer to AstVs from other animals than are AstVs from bats, a frequently proposed reservoir. Our studies not only demonstrate that human astroviruses can be detected in NHP but also suggest that NHP are unique in their ability to support diverse AstV genotypes, further challenging the paradigm that astrovirus infection is species-specific.  相似文献   
77.
78.
The Malagasy endemic ant Malagidris sofina (Bolton and Fisher 2014) nests on cliff faces in natural rock alcoves or clay banks. Colonies have single ergatoid queens and reproduce by fission. Each nest has a funnel-shaped entrance that projects horizontally from the cliff face. We examine three hypotheses for the function of the funnels—water exclusion, gas exchange and defense. Entrance funnels are relatively impermeable and divert water from nests, but simple tubes would achieve the same result. Consistent with the gas exchange hypothesis, projected funnel entrances likely increase gas exchange rates over sixfold compared to simple tubes and may increase air flow within the nest. Gas exchange may explain the recurrent evolution of funnel entrances in several ant lineages, especially among cliff dwelling species. We outline M. sofina defense responses to conspecifics and co-occurring ant species, and find no support for a defense role of entrance funnels. Workers display little aggression but respond to several species with an original form of nest defense––cliff jumping—in which workers drop off the cliff face while clinging to invaders and then return to their nest. M. sofina is a restricted range species under threat of extinction by habitat destruction. Its novel lifestyle underscores the urgency of exploration and conservation in a tropical biodiversity hotspot.  相似文献   
79.
The planarian, a freshwater flatworm, has proven to be a powerful system for dissecting metazoan regeneration and stem cell biology1,2. Planarian regeneration of any missing or damaged tissues is made possible by adult stem cells termed neoblasts3. Although these stem cells have been definitively shown to be pluripotent and singularly capable of reconstituting an entire animal4, the heterogeneity within the stem cell population and the dynamics of their cellular behaviors remain largely unresolved. Due to the large number and wide distribution of stem cells throughout the planarian body plan, advanced methods for manipulating subpopulations of stem cells for molecular and functional study in vivo are needed.Tissue transplantation and partial irradiation are two methods by which a subpopulation of planarian stem cells can be isolated for further study. Each technique has distinct advantages. Tissue transplantation allows for the introduction of stem cells, into a naïve host, that are either inherently genetically distinct or have been previously treated pharmacologically. Alternatively, partial irradiation allows for the isolation of stem cells within a host, juxtaposed to tissue devoid of stem cells, without the introduction of a wound or any breech in tissue integrity. Using these two methods, one can investigate the cell autonomous and non-autonomous factors that control stem cell functions, such as proliferation, differentiation, and migration.Both tissue transplantation5,6 and partial irradiation7 have been used historically in defining many of the questions about planarian regeneration that remain under study today. However, these techniques have remained underused due to the laborious and inconsistent nature of previous methods. The protocols presented here represent a large step forward in decreasing the time and effort necessary to reproducibly generate large numbers of grafted or partially irradiated animals with efficacies approaching 100 percent. We cover the culture of large animals, immobilization, preparation for partial irradiation, tissue transplantation, and the optimization of animal recovery. Furthermore, the work described here demonstrates the first application of the partial irradiation method for use with the most widely studied planarian, Schmidtea mediterranea. Additionally, efficient tissue grafting in planaria opens the door for the functional testing of subpopulations of naïve or treated stem cells in repopulation assays, which has long been the gold-standard method of assaying adult stem cell potential in mammals8. Broad adoption of these techniques will no doubt lead to a better understanding of the cellular behaviors of adult stem cells during tissue homeostasis and regeneration.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号