首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2712篇
  免费   225篇
  2937篇
  2023年   5篇
  2022年   11篇
  2021年   34篇
  2020年   12篇
  2019年   16篇
  2018年   28篇
  2017年   29篇
  2016年   45篇
  2015年   118篇
  2014年   100篇
  2013年   131篇
  2012年   198篇
  2011年   173篇
  2010年   116篇
  2009年   124篇
  2008年   161篇
  2007年   173篇
  2006年   158篇
  2005年   152篇
  2004年   170篇
  2003年   193篇
  2002年   149篇
  2001年   56篇
  2000年   35篇
  1999年   49篇
  1998年   50篇
  1997年   39篇
  1996年   28篇
  1995年   36篇
  1994年   30篇
  1993年   25篇
  1992年   24篇
  1991年   28篇
  1990年   22篇
  1989年   33篇
  1988年   20篇
  1987年   15篇
  1986年   21篇
  1985年   9篇
  1984年   15篇
  1983年   12篇
  1982年   18篇
  1981年   9篇
  1980年   4篇
  1979年   12篇
  1978年   11篇
  1977年   11篇
  1976年   6篇
  1974年   6篇
  1966年   6篇
排序方式: 共有2937条查询结果,搜索用时 0 毫秒
41.
42.
43.
1.?Phenotypic plasticity, the response of individual phenotypes to their environment, can allow organisms to cope with spatio-temporal variation in environmental conditions. Recent studies have shown that variation exists among individuals in their capacity to adjust their traits to environmental changes and that this individual plasticity can be under strong selection. Yet, little is known on the extent and ultimate causes of variation between populations and individuals in plasticity patterns. 2.?In passerines, timing of breeding is a key life-history trait strongly related to fitness and is known to vary with the environment, but few studies have investigated the within-species variation in individual plasticity. 3.?Here, we studied between- and within-population variation in breeding time, phenotypic plasticity and selection patterns for this trait in four Mediterranean populations of blue tits (Cyanistes caeruleus) breeding in habitats varying in structure and quality. 4.?Although there was no significant warming over the course of the study, we found evidence for earlier onset of breeding in warmer years in all populations, with reduced plasticity in the less predictable environment. In two of four populations, there was significant inter-individual variation in plasticity for laying date. Interestingly, selection for earlier laying date was significant only in populations where there was no inter-individual differences in plasticity. 5.?Our results show that generalization of plasticity patterns among populations of the same species might be challenging even at a small spatial scale and that the amount of within-individual variation in phenotypic plasticity may be linked to selective pressures acting on these phenotypic traits.  相似文献   
44.
In addition to its positive signaling function in the antigen presentation process, CD4 acts as the primary receptor for HIV-1. Contact between CD4 and the viral envelope leads to virus entry, but can also trigger apoptosis of uninfected CD4+ T-cells through a mechanism that is poorly understood. We show that Siva-1, a death domain-containing proapoptotic protein, associates with the cytoplasmic domain of CD4. This interaction is mediated by the cysteine-rich region found in the C-terminal part of the Siva-1 protein. Expression of Siva-1 specifically increases the susceptibility of both T-cell lines and unstimulated human primary CD4+ T-lymphocytes to CD4-mediated apoptosis triggered by the HIV-1 envelope, and results in activation of a caspase-dependent mitochondrial pathway. The same susceptibility is observed in T-cells expressing a truncated form of CD4 that is able to recruit Siva-1 but fails to associate with p56Lck, indicating that Siva-1 participates in a pathway independent of the p56Lck kinase activity. Altogether, these results suggest that Siva-1 might participate in the CD4-initiated signaling apoptotic pathway induced by the HIV-1 envelope in T-lymphoid cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
45.
Correct pairing, synapsis and recombination between homologous chromosomes are essential for normal meiosis. All these events are strongly regulated, and our knowledge of the mechanisms involved in this regulation is increasing rapidly. Chromosomal rearrangements are known to disturb these processes. In the present paper, synapsis and recombination (number and distribution of MLH1 foci) were studied in three boars (Sus scrofa domestica) carrying different chromosomal rearrangements. One (T34he) was heterozygote for the t(3;4)(p1.3;q1.5) reciprocal translocation, one (T34ho) was homozygote for that translocation, while the third (T34Inv) was heterozygote for both the translocation and a pericentric inversion inv(4)(p1.4;q2.3). All three boars were normal for synapsis and sperm production. This particular situation allowed us to rigorously study the impact of rearrangements on recombination. Overall, the rearrangements induced only minor modifications of the number of MLH1 foci (per spermatocyte or per chromosome) and of the length of synaptonemal complexes for chromosomes 3 and 4. The distribution of MLH1 foci in T34he was comparable to that of the controls. Conversely, the distributions of MLH1 foci on chromosome 4 were strongly modified in boar T34Inv (lack of crossover in the heterosynaptic region of the quadrivalent, and crossover displaced to the chromosome extremities), and also in boar T34ho (two recombination peaks on the q-arms compared with one of higher magnitude in the controls). Analyses of boars T34he and T34Inv showed that the interference was propagated through the breakpoints. A different result was obtained for boar T34ho, in which the breakpoints (transition between SSC3 and SSC4 chromatin on the bivalents) seemed to alter the transmission of the interference signal. Our results suggest that the number of crossovers and crossover interference could be regulated by partially different mechanisms.  相似文献   
46.
Summary Most patients with the complex association aniridia — predisposition to Wilms' tumor (WAGR syndrome) present with a de novo constitutional deletion of band 11p13. We report a patient with WAGR syndrome and a reciprocal translocation between chromosomes 5 and 11 t(5;11)(q11;p13). High resolution banding cytogenetic analysis and molecular characterization using 11p13 DNA markers showed a tiny deletion encompassing the gene for CAT but sparing the gene for FSHB. This suggests that syndromes associated with apparently balanced translocations may be due to undetectable loss of material at the breakpoint(s) rather than to breakage in the gene itself.  相似文献   
47.
The first mammalian remain ever found in NewCaledonia is an upper tooth found by golddiggers in the Plio-Pleistocene terrace from the Diahot river. This tooth, given to the Muséum national d'Histoire naturelle (Paris) in 1876, was determined as a rhinoceros tooth and then completely forgotten. Its detailed study shows that it belongs to Zygomaturus, a large marsupial diprotodontid genus whose story is rather complicated. The Diahot tooth represents a new species of Zygomaturus, Z. diahotensis nov. sp., close to Z. trilobus from the Australian Pleistocene. That kinship suggests a Plio-Pleistocene land connection between Australia and New Caledonia, whereas till now New Caledonia was supposed to be separated from Australia since the end of the Cretaceous, because of the total absence of indigenous mammals, fossil or recent, in New Caledonia. The latest geological studies in the East Pacific do not contradict our hypothesis.  相似文献   
48.
ADPglucose, the essential substrate for starch synthesis, is synthesized in maize by a pathway involving at least invertases, sucrose synthase, and ADPglucose pyrophosphorylase, as shown by the starch-deficient mutants, mn1, sh1, and bt2 or sh2, respectively. To improve understanding of the relationship between early grain-filling traits and carbohydrate composition in mature grain, QTLs linked to soluble invertase, sucrose synthase, and ADPglucose pyrophosphorylase activities and to starch, sucrose, fructose, and glucose concentrations were investigated. In order to take into account the specific time-course of each enzyme activity during grain filling, sampling was carried out at three periods (15, 25, and 35 d after pollination) on 100 lines from a recombinant inbred family, grown in the field. The MQTL method associated with QTL interaction analysis revealed numerous QTLs for all traits, but only one QTL was consistently observed at the three sampling periods. Some chromosome zones were heavily labelled, forming clusters of QTLs. Numerous possible candidate genes of the starch synthetic pathway co-located with QTLs. Four QTLs were found close to the locus Sh1 (bin 9.01) coding for the sucrose synthase. In order to confirm the importance of this locus, the CAPS polymorphism of the Sh1 gene was analysed in 45 genetically unrelated maize lines from various geographical origins. The DNA polymorphism was significantly associated with phenotypic traits related to grain filling (starch and amylose content, grain matter, and ADPglucose pyrophosphorylase activity at 35 DAP). Thus, the Sh1 locus could provide a physiologically pertinent marker for maize selection.  相似文献   
49.
Infections with human parvoviruses B19 and recently discovered human bocaviruses (HBoVs) are widespread, while PARV4 infections are transmitted parenterally and prevalent specifically in injecting drug users and hemophiliacs. To investigate the exposure and circulation of parvoviruses related to B19 virus, PARV4, and HBoV in nonhuman primates, plasma samples collected from 73 Cameroonian wild-caught chimpanzees and gorillas and 91 Old World monkey (OWM) species were screened for antibodies to recombinant B19 virus, PARV4, and HBoV VP2 antigens by enzyme-linked immunosorbent assay (ELISA). Moderate to high frequencies of seroreactivity to PARV4 (63% and 18% in chimpanzees and gorillas, respectively), HBoV (73% and 36%), and B19 virus (8% and 27%) were recorded for apes, while OWMs were uniformly negative (for PARV4 and B19 virus) or infrequently reactive (3% for HBoV). For genetic characterization, plasma samples and 54 fecal samples from chimpanzees and gorillas collected from Cameroonian forest floors were screened by PCR with primers conserved within Erythrovirus, Bocavirus, and PARV4 genera. Two plasma samples (chimpanzee and baboon) were positive for PARV4, while four fecal samples were positive for HBoV-like viruses. The chimpanzee PARV4 variant showed 18% and 15% nucleotide sequence divergence in NS and VP1/2, respectively, from human variants (9% and 7% amino acid, respectively), while the baboon variant was substantially more divergent, mirroring host phylogeny. Ape HBoV variants showed complex sequence relationships with human viruses, comprising separate divergent homologues of HBoV1 and the recombinant HBoV3 species in chimpanzees and a novel recombinant species in gorillas. This study provides the first evidence for widespread circulation of parvoviruses in primates and enables future investigations of their epidemiology, host specificity, and (co)evolutionary histories.Autonomous parvoviruses known to infect humans comprise parvovirus B19 (18) and the recently discovered PARV4 (22) and human bocavirus (HBoV) (3). Members of the family Parvoviridae are genetically and biologically diverse and are classified into several genera or groups, showing marked differences in host range, pathology, and tissue/cellular tropisms (18). Human parvovirus B19, a member of the Erythrovirus genus, is transmitted primarily by the respiratory route but causes systemic infections. Erythroid progenitor cells are specifically targeted through expression of globoside P antigen, which acts as the B19 virus receptor for entry (5). In common with infections by most parvoviruses, B19 virus infections are acute; a period of intense viremia is followed by seroconversion for antibody to B19 virus and lifelong immunity from reinfection (29). Despite the clearance of viremia and seroconversion for antibody, lifelong persistence of viral DNA in tissues has been shown to occur (12, 20, 26, 28, 43, 58). Three genotypes of B19 virus have been described, differing in nucleotide sequence by approximately 13 to 14% (7, 21, 41, 53); genotypes 1 and 2 have been found in Europe, the United States, and other Western countries, while genotype 3 is restricted to sub-Saharan Africa and South America (7, 47, 49). B19 virus widely circulates in human populations worldwide; in Western countries, several studies have documented increasing frequencies of B19 virus seropositivity with age, rising to approximately 60 to 70% by adulthood (15, 39, 48, 61).Another human parvovirus, PARV4, shows markedly different epidemiology and transmission routes. It was originally detected in plasma from an individual with an “acute infection syndrome” resembling that of primary human immunodeficiency virus (HIV) infection (22). While this clinical presentation has not been observed again, infection with PARV4 is known to be widespread specifically in individuals with a history of parenteral exposure (injecting drug users [IDUs], hemophiliacs, polytransfused individuals), with a strikingly higher incidence in those infected with HIV-1 (13, 14, 30, 35, 54). These observations suggest that PARV4 is primarily transmitted though parenteral routes in Western countries (54, 56). In common with infection with the better-characterized human parvovirus B19, infection with PARV4 is associated with a period of acute viremia, followed by seroconversion for antibody and long-term persistence of viral DNA sequences in lymphoid and other tissue (33, 37, 52). Circulating variants of PARV4 have been classified into three distinct genotypes exhibiting approximately 8% nucleotide sequence divergence from each other. Genotypes 1 and 2 circulate in Western countries, while genotype 3 has to date been recorded only in sub-Saharan Africa (45, 55).The third human parvovirus, HBoV (3), shows a number of epidemiological and clinical attributes different from those of both B19 virus and PARV4. HBoV was originally found in the respiratory tract of young children and has been the subject of intense investigation as a potential cause of human respiratory disease (reviewed in references 1, 51, and 62). Although it is frequently detected by PCR in the nasopharynx of viremic individuals with primary infections with lower respiratory tract disease, other coinfecting respiratory viruses are frequently detected (19). HBoV additionally shows long-term, low-level carriage in the respiratory tract after primary infection, which further complicates PCR-based etiological studies (2, 38) and warrants the use of other diagnostic strategies, such as serology (30, 32, 59). In contrast to the rather minimal genetic diversity of B19 virus and PARV4 genotypes, bocaviruses infecting humans are now known to comprise three to four major genetic variants (termed types or species 1 to 4) (23, 24). HBoV1 and HBoV2 show 22%, 33%, and 20% amino acid sequence divergence from each other in the encoded viral nonstructural (NS), NP-1, and structural VP1/VP2 proteins, respectively, the latter potentially leading to antigenic diversity and some loss of antigenic cross-reactivity. A third type/species of HBoV is a chimeric form with a nonstructural gene region (NS, NP1) most similar to HBoV1, a recombination breakpoint in the intergenic region between NP1 and VP1, and structural genes related to those of HBoV2 (4, 23). Current data suggest that only HBoV1 is capable of infecting the respiratory tract; most published large-scale screening studies have failed to detect HBoV2 (or HBoV3) in respiratory samples (10, 11, 60), while all three types/species are detectable in fecal samples, indicating the existence of an alternative or additional site of virus replication (23). Despite extensive inquiry, the exact role of HBoV1 in respiratory disease remains unclear, as is the proposed etiological role of HBoV2 (and possibly HBoV3) in gastroenteritis (4, 11, 23, 50). Very recently, a fourth species/type, HBoV4, has been detected in fecal samples; genetically it also shows evidence for past recombination, with NS and NP1 region sequences grouping with HBoV2, while VP1/VP2 is more closely related to HBoV3 (23).We have little understanding of the past epidemiology, evolution, and origins of human parvoviruses. For both B19 virus and PARV4, evidence has been obtained for a temporal succession of genotypes over time (37, 43); in Europe, B19 virus genotype 1 largely replaced type 2 in the 1960 and 1970s (43), while current data indicate that a similar replacement of PARV4 genotypes occurred within the last 20 years (37). The highly restricted sequence diversity of currently circulating variants of PARV4 and B19 virus and of HBoV1 variants supports the hypothesis of a relatively recent emergence and spread of these viruses in human populations (36, 42, 64).The existence and evolution of parvoviruses on a much longer time scale is suggested by the observations that members of the Erythrovirus and Parvovirus genera both contain viruses that are highly host species specific and that the molecular phylogenies of both genera are largely congruent with those of their hosts (34). This has led to the hypothesis of long-term coevolution of parvoviruses with their host over the 90 million years of mammalian evolution and perhaps beyond. Among erythroviruses, simian homologues of B19 virus have been found in cynomolgus monkeys (44) and rhesus and pig-tailed macaques (16) and more genetically distant viruses have been characterized in chipmunks and cows (9, 63). Divergent homologues of PARV4 in pigs and cows have been described (31), while the bovine and canine parvoviruses distantly related to HBoV are the originally described members of the Bocavirus genus. However, the process of virus-host codivergence is known to be punctuated by occasional cross-species transmissions, including the well-documented spread of feline parvovirus to dogs (46). Based on serological evidence, the possible transmission of simian erythroviruses to animal handlers has been proposed (6).To gain further insights into the origins and evolution of human parvoviruses, we have performed large-scale serological and PCR-based screening of nonhuman primates (chimpanzees and gorillas) and of several species of Old World monkeys (OWMs) for evidence of infection with parvoviruses that are antigenically related to the human B19, PARV4, and HBoV viruses. By PCR, we have sought to genetically characterize homologues of the three autonomous human parvoviruses in apes and Old World monkey species and to analyze their evolutionary relationship to human and other mammalian homologues of these viruses.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号