首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   16篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   6篇
  2019年   6篇
  2018年   6篇
  2017年   3篇
  2016年   7篇
  2015年   19篇
  2014年   16篇
  2013年   19篇
  2012年   38篇
  2011年   27篇
  2010年   8篇
  2009年   22篇
  2008年   21篇
  2007年   20篇
  2006年   9篇
  2005年   22篇
  2004年   20篇
  2003年   11篇
  2002年   7篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1985年   1篇
排序方式: 共有302条查询结果,搜索用时 15 毫秒
21.
Accumulation of the carcinogenic mycotoxin aflatoxin B, has been reported from members of three different groups of Aspergilli (4) Aspergillus flavus, A. flavus var. parvisclerotigenus, A. parasiticus, A. toxicarius, A. nomius, A. pseudotamarii, A. zhaoqingensis, A. bombycis and from the ascomycete genus Petromyces (Aspergillus section Flavi), (2) Emericella astellata and E. venezuelensis from the ascomycete genus Emericella (Aspergillus section Nidulantes) and (3) Aspergillus ochraceoroseus from a new section proposed here: Aspergillus section Ochraceorosei. We here describe a new species, A. rambellii referable to Ochraceorosei, that accumulates very large amounts of sterigmatocystin, 3-O-methylsterigmatocystin and aflatoxin B1, but not any of the other known extrolites produced by members of Aspergillus section Flavi or Nidulantes. G type aflatoxins were only found in some of the species in Aspergillus section Flavi, while the B type aflatoxins are common in all three groups. Based on the cladistic analysis of nucleotide sequences of ITS1 and 2 and 5.8S, it appears that type G aflatoxin producers are paraphyletic and that section Ochraceorosei is a sister group to the sections Flavi, Circumdati and Cervini, with Emericella species being an outgroup to these sister groups. All aflatoxin producing members of section Flavi produce kojic acid and most species, except A. bombycis and A. pseudotamarii, produce aspergillic acid. Species in Flavi, that produce B type aflatoxins, but not G type aflatoxins, often produced cyclopiazonic acid. No strain was found which produce both G type aflatoxins and cyclopiazonic acid. It was confirmed that some strains of A. flavus var. columnaris produce aflatoxin B2, but this extrolite was not detected in the ex type strain of that variety. A. flavus var. parvisclerotigenus is raised to species level based on the specific combination of small sclerotia, profile of extrolites and rDNA sequence differences. A. zhaoqingensis is regarded as a synonym of A. nomius, while A. toxicarius resembles A. parasiticus but differs with at least three base pair differences. At least 10 Aspergillus species can be recognized which are able to biosynthesize aflatoxins, and they are placed in three very different clades.  相似文献   
22.
To overcome pharmacokinetic and solubility problems observed in early clinical trials with the potent anticancer compound CHS828, we synthesised a series of prodrugs with improved properties. The best compound obtained was EB1627, with a tetraethyleneglycol moiety attached to the parent drug via a carbonate linkage. This compound was found soluble enough to be given i.v. and the drug was rapidly released in vivo exerting a very potent inhibitory activity alone and in combination with known cytostatics (etoposide) in animal models in vivo.  相似文献   
23.
This work demonstrates cell swelling as a new regulatory mechanism for the cloned hyperpolarization-activated, cyclic nucleotide-gated channel 2 (HCN2). HCN2 channels were coexpressed with aquaporin1 in Xenopus laevis oocytes and currents were monitored using a two-electrode voltage-clamp. HCN2 channels were activated by hyperpolarization to -100 mV and the currents were measured before and during hypoosmotic cell swelling. Cell swelling increased HCN2 currents by 30% without changing the kinetics of the currents. Injection of 50 nl intracellular solution resulted in a current increase of 20%, indicating that an increase in cell volume also under isoosmotic conditions may lead to activation of HCN2. In the absence of aquaporin1 only negligible changes in oocyte cell volume occur during exposure to hypoosmotic media and no significant change in HCN2 channel activity was observed during perfusion with hypoosmotic media. This indicates that cell swelling and not a change in ionic strength of the media, caused the observed swelling-induced increase in current. The increase in HCN2 current induced by cell swelling could be abolished by cytochalasin D treatment, indicating that an intact F-actin cytoskeleton is a prerequisite for the swelling-induced current.  相似文献   
24.
Bøttger P  Pedersen L 《The FEBS journal》2005,272(12):3060-3074
The mammalian members of the inorganic phosphate (P(i)) transporter (PiT) family, the type III sodium-dependent phosphate (NaP(i)) transporters PiT1 and PiT2, have been assigned housekeeping P(i) transport functions and are suggested to be involved in chondroblastic and osteoblastic mineralization and ectopic calcification. The PiT family members are conserved throughout all kingdoms and use either sodium (Na+) or proton (H+) gradients to transport P(i). Sequence logo analyses revealed that independent of their cation dependency these proteins harbor conserved signature sequences in their N- and C-terminal ends with the common core consensus sequence GANDVANA. With the exception of 10 proteins from extremophiles all 109 proteins analyzed carry an aspartic acid in one or both of the signature sequences. We changed either of the highly conserved aspartates, Asp28 and Asp506, in the N- and C-terminal signature sequences, respectively, of human PiT2 to asparagine and analyzed P(i) uptake function in Xenopus laevis oocytes. Both mutant proteins were expressed at the cell surface of the oocytes but exhibited knocked out NaP(i) transport function. Human PiT2 is also a retroviral receptor and we have previously shown that this function can be exploited as a control for proper processing and folding of mutant proteins. Both mutant transporters displayed wild-type receptor functions implying that their overall architecture is undisturbed. Thus the presence of an aspartic acid in either of the PiT family signature sequences is critical for the Na+-dependent P(i) transport function of human PiT2. The conservation of the aspartates among proteins using either Na+- or H+-gradients for P(i) transport suggests that they are involved in H+-dependent P(i) transport as well. Current results favor a membrane topology model in which the N- and C-terminal PiT family signature sequences are positioned in intra- and extracellular loops, respectively, suggesting that they are involved in related functions on either side of the membrane. The present data are in agreement with a possible role of the signature sequences in translocation of cations.  相似文献   
25.
The functional consequences of a series of point mutations in transmembrane segment M1 of sarcoplasmic reticulum Ca2+-ATPase were analyzed in steady-state and transient kinetic experiments examining the partial reaction steps involved in Ca2+ interaction and phosphoenzyme turnover. Arginine or leucine substitution of Glu51, Glu55, or Glu58, located in the N-terminal third of M1, did not affect these functions. Arginine or leucine substitution of Asp59, located right at the bend of M1 seen in the crystal structure of the thapsigargin-bound form, caused a 10-fold increase of the rate of Ca2+ dissociation toward the cytoplasmic side. Mutation of Leu60 to alanine or proline and of Val62 to alanine also enhanced Ca2+ dissociation, whereas an 11-fold reduction of the rate of Ca2+ dissociation was observed upon alanine substitution of Leu65, thus providing evidence for a relation of the middle part of M1 to a gating mechanism controlling the dissociation of occluded Ca2+ from its membranous binding sites. Moreover, phosphoenzyme processing was affected by some of the latter mutations, in particular leucine substitution of Asp59, and alanine substitution of Leu65 accelerated the transition to ADP-insensitive phosphoenzyme and blocked its dephosphorylation, thus demonstrating that this part of M1, besides being important in Ca2+ interaction, furthermore, is a critical element in the long range signaling between the transmembrane domain and the cytoplasmic catalytic site.  相似文献   
26.
Exercise normalises overexpression of TNF-alpha in knockout mice   总被引:4,自引:0,他引:4  
TNF-alpha is linked with insulin resistance, as greater amounts of TNF are detected in muscle and adipose tissue in glycemically challenged people and TNF-alpha inhibits insulin receptor signalling. However, what modulates this overexpression of TNF-alpha is currently unknown. We examined the effect of 1 h exercise on overexpression of the TNF-alpha gene in TNF receptor 1 and 2 knockout mice. IL-6 knockout mice were included to elucidate the importance of IL-6 in regulating TNF-alpha in response to exercise. TNF-alpha gene expression was over-expressed in muscle in both TNFR knockout models. TNF-alpha overexpression returned to normal levels after exercise in the TNF-alpha receptor knockout models. In IL-6 knockout mice, a modest decrease in TNF-alpha was also observed. These data suggest that TNF-alpha-induced insulin resistance can be regulated by a single exercise bout by normalising TNF-alpha expression. This exercise effect can be mediated via IL-6, but also an IL-6 independent mechanism seems to exist.  相似文献   
27.
The type III sodium-dependent phosphate (NaPi) cotransporter, Pit2, is a receptor for amphotropic murine leukemia virus (A-MuLV) and 10A1 MuLV. In order to determine what is sufficient for Pit2 receptor function, a deletion mutant lacking about the middle half of the protein was made. The mutant supported entry for both viruses, unequivocally narrowing down the identification of the sequence that is sufficient to specify the receptor functions of Pit2 to its N-terminal 182 amino acids and C-terminal 170 amino acids.  相似文献   
28.
29.
The acyl-CoA binding protein (ACBP) is a small intracellular protein that specifically binds and transports medium to long-chain acyl-CoA esters. Previous studies have shown that ACBP is ubiquitously expressed but found at particularly high levels in lipogenic cell types as well as in many epithelial cells. Here we show that ACBP is widely expressed in human and mouse kidney epithelium, with the highest expression in the proximal convoluted tubules. To elucidate the role of ACBP in the renal epithelium, mice with targeted disruption of the ACBP gene (ACBP(-/-)) were used to study water and NaCl balance as well as urine concentrating ability in metabolic cages. Food intake and urinary excretion of Na(+) and K(+) did not differ between ACBP(-/-) and (+/+) mice. Interestingly, however, water intake and diuresis were significantly higher at baseline in ACBP(-/-) mice compared with that of (+/+) mice. Subsequent to 20-h water deprivation, ACBP(-/-) mice exhibited increased diuresis, reduced urine osmolality, elevated hematocrit, and higher relative weight loss compared with (+/+) mice. There were no significant differences in plasma concentrations of renin, corticosterone, and aldosterone between mice of the two genotypes. After water deprivation, renal medullary interstitial fluid osmolality and concentrations of Na(+), K(+), and urea did not differ between genotypes and cAMP excretion was similar. Renal aquaporin-1 (AQP1), -2, and -4 protein abundances did not differ between water-deprived (+/+) and ACBP(-/-) mice; however, ACBP(-/-) mice displayed increased apical targeting of pS256-AQP2. AQP3 abundance was lower in ACBP(-/-) mice than in (+/+) control animals. Thus we conclude that ACBP is necessary for intact urine concentrating ability. Our data suggest that the deficiency in urine concentrating ability in the ACBP(-/-) may be caused by reduced AQP3, leading to impaired efflux over the basolateral membrane of the collecting duct.  相似文献   
30.
Cell membrane permeabilization by electric pulses (electropermeabilization), results in free exchange of ions across the cell membrane. The role of electrotransfer-mediated Ca(2+)-influx on muscle signaling pathways involved in degeneration (β-actin and MurF), inflammation (IL-6 and TNF-α), and regeneration (MyoD1, myogenin, and Myf5) was investigated, using pulse parameters of both electrochemotherapy (8 HV) and DNA delivery (HVLV). Three pulsing conditions were used: 8 high-voltage pulses (8 HV), resulting in large permeabilization and ion flux, and a combination of one high-voltage pulse and one low-voltage pulse (HVLV), either alone or in combination with injection of DNA. Mice and rats were anesthetized before pulsing. At the times given, animals were killed, and intact tibialis cranialis muscles were excised for analysis. Uptake of Ca(2+) was assessed using (45)Ca as a tracer. Using gene expression analyses and histology, we showed a clear association between Ca(2+) influx and muscular response. Moderate Ca(2+) influx induced by HVLV pulses results in activation of pathways involved in immediate repair and hypertrophy. This response could be attenuated by intramuscular injection of EGTA reducing Ca(2+) influx. Larger Ca(2+) influx as induced by 8-HV pulses leads to muscle damage and muscle fiber regeneration through recruitment of satellite cells. The extent of Ca(2+) influx determines the muscular response to electrotransfer and, thus, the success of a given application. In the case of electrochemotherapy, in which the objective is cell death, a large influx of Ca(2+) may be beneficial, whereas for DNA electrotransfer, muscle recovery should occur without myofiber loss to ensure preservation of plasmid DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号