首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   16篇
  302篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   6篇
  2019年   6篇
  2018年   6篇
  2017年   3篇
  2016年   7篇
  2015年   19篇
  2014年   16篇
  2013年   19篇
  2012年   38篇
  2011年   27篇
  2010年   8篇
  2009年   22篇
  2008年   21篇
  2007年   20篇
  2006年   9篇
  2005年   22篇
  2004年   20篇
  2003年   11篇
  2002年   7篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1985年   1篇
排序方式: 共有302条查询结果,搜索用时 0 毫秒
101.
Retinol-binding protein 4 (RBP4) is a plasma protein which is elevated in obesity and type 2 diabetes. We aimed to investigate whether RBP4 represents a mechanism underlying the associations between low birth weight (LBW), high-fat diet, and insulin resistance. Forty-six young, lean men with low (n = 20) or normal (n = 26) birth weight underwent a 5-day high-fat high-calorie (HFHC) dietary intervention. In vivo glucose metabolism was assessed by euglycemic-hyperinsulinemic clamp, glucose tracer and intravenous glucose tolerance test techniques. Body composition was measured by a dual-energy x-ray absorptiometry scan, and plasma RBP4 by an enzyme-linked immunosorbent assay. RBP4 was not associated with birth weight, but with BMI (β = 0.9 μg/ml (0.08; 1.8) (95% confidence interval), P = 0.03) and plasma levels of low-density lipoprotein cholesterol (β = 5.3 μg/ml (1.9; 8.7), P = 0.03) and triglycerides (β = 15.4 μg/ml (9.5; 21.3), P < 0.001). Under baseline diet conditions, RBP4 was associated with decreased disposition index (D(i)) (β = -2.4% (-4.5%; -0.2%), P = 0.04) and increased basal hepatic glucose production rate (HGP) (β = 0.02 mg kg(-1) min(-1) (0.002; 0.04), P = 0.03), but not associated with peripheral glucose disposal rate or hepatic insulin resistance index. RBP4 levels were not influenced by overfeeding or related to peripheral and hepatic insulin resistance provoked by the dietary intervention. In conclusion, plasma RBP4 in young men associates with components of the metabolic syndrome, but is not determined by birth weight and seems not to be involved in short-term high-fat diet-induced insulin resistance.  相似文献   
102.
Lactobacillus acidophilus NCFM is a probiotic bacterium known for its beneficial effects on human health. The importance of α-galactosidases (α-Gals) for growth of probiotic organisms on oligosaccharides of the raffinose family present in many foods is increasingly recognized. Here, the crystal structure of α-Gal from L. acidophilus NCFM (LaMel36A) of glycoside hydrolase (GH) family 36 (GH36) is determined by single-wavelength anomalous dispersion. In addition, a 1.58-Å-resolution crystallographic complex with α-d-galactose at substrate binding subsite − 1 was determined. LaMel36A has a large N-terminal twisted β-sandwich domain, connected by a long α-helix to the catalytic (β/α)8-barrel domain, and a C-terminal β-sheet domain. Four identical monomers form a tightly packed tetramer where three monomers contribute to the structural integrity of the active site in each monomer. Structural comparison of LaMel36A with the monomeric Thermotoga maritima α-Gal (TmGal36A) reveals that O2 of α-d-galactose in LaMel36A interacts with a backbone nitrogen in a glycine-rich loop of the catalytic domain, whereas the corresponding atom in TmGal36A is from a tryptophan side chain belonging to the N-terminal domain. Thus, two distinctly different structural motifs participate in substrate recognition. The tetrameric LaMel36A furthermore has a much deeper active site than the monomeric TmGal36A, which possibly modulates substrate specificity. Sequence analysis of GH36, inspired by the observed structural differences, results in four distinct subgroups having clearly different active-site sequence motifs. This novel subdivision incorporates functional and architectural features and may aid further biochemical and structural analyses within GH36.  相似文献   
103.
Twenty-six point mutations were introduced into the N-terminal and middle parts of transmembrane segment M1 of the Na+, K+ -ATPase and its cytosolic extension. None of the alterations to charged and polar residues in the N-terminal part of M1 and its cytosolic extension had any major effect on the cation binding properties, thus rejecting the hypothesis that these residues are involved in cation selectivity. By contrast, specific residues in the middle part of M1, particularly Leu(99), were found critical to K+ interaction of the enzyme. Hence, mutation L99A reduced the affinity for K+ activation of E2P dephosphorylation 17-fold, and L99F reduced the equilibrium level of the K+-occluded intermediate [K2]E2 and increased the rate of K+ deocclusion 39-fold, i.e. more than seen for mutation E329Q of the cation-binding glutamate in M4. L99Q affected K+ interaction in yet another way, the equilibrium level of [K2]E2 being slightly increased despite an increased rate of K+ deocclusion, suggesting that the K+ ions leave and enter the occlusion pocket more frequently than in the wild type. L99Q furthermore affected the ability to discriminate between Na+ and K+ on the extracellular side. Our findings can be explained by a structural model in which Leu(99) and Glu(329) interact and cooperate in K+ binding and gating of the K+ sites. The disturbance of K+ interaction in mutants with alteration to Leu(91), Phe(95), Ser(96), or Leu(98) could be a consequence of the roles of these residues in positioning the M1 helix optimally for the interaction between Leu(99) and Glu(329). Phe(95) may serve to stabilize the pivot for movement of M1 through interaction with Ile(287) in M3.  相似文献   
104.
Pregnancy-associated malaria (PAM) is caused by Plasmodium falciparum-infected erythrocytes (IEs) that bind to chondroitin sulphate A (CSA) in the placenta by PAM-associated clonally variant surface antigens (VSA). Pregnancy-specific VSA (VSA(PAM)), which include the PfEMP1 variant VAR2CSA, are targets of IgG-mediated protective immunity to PAM. Here, we report an investigation of the specificity of naturally acquired immunity to PAM, using eight human monoclonal IgG1 antibodies that react exclusively with intact CSA-adhering IEs expressing VSA(PAM). Four reacted in Western blotting with high-molecular-weight (> 200 kDa) proteins, while seven reacted with either the DBL3-X or the DBL5-epsilon domains of VAR2CSA expressed either as Baculovirus constructs or on the surface of transfected Jurkat cells. We used a panel of recombinant antigens representing DBL3-X domains from P. falciparum field isolates to evaluate B-cell epitope diversity among parasite isolates, and identified the binding site of one monoclonal antibody using a chimeric DBL3-X construct. Our findings show that there is a high-frequency memory response to VSA(PAM), indicating that VAR2CSA is a primary target of naturally acquired PAM-specific protective immunity, and demonstrate the value of human monoclonal antibodies and conformationally intact recombinant antigens in VSA characterization.  相似文献   
105.
Stathmin, or Oncoprotein 18 (Op18), is the founding member of a phosphoprotein family that can regulate the microtubule cytoskeleton by sequestering tubulin and promoting microtubule catastrophe. Stathmin is subject to spatially and temporally controlled regulatory phosphorylation, which inhibits its interaction with tubulin. Drosophila Stathmin has similar properties to the mammalian proteins. We find that Drosophila Stathmin is required for specific microtubule-dependent processes: maintenance of oocyte identity within a germline cyst and localization of polarity determinants. Unexpectedly, microtubules are less abundant in stathmin mutant cells compared to normal cells, showing that a key function of Stathmin in vivo is the long-term maintenance of the microtubule cytoskeleton. The microtubule network re-forms more slowly after coldshock in stathmin mutant follicle cells. Surprisingly, stathmin mutant animals and tissues show a marked decrease in total tubulin-protein levels, and this might explain the effect on the microtubule cytoskeleton. Stathmin overexpression also increases tubulin protein. Free alpha- and beta-tubulin have been shown to negatively autoregulate their own synthesis. We suggest that Stathmin serves to maintain a noninhibitory, soluble, and releasable tubulin pool.  相似文献   
106.
Recycling of enzymes has a potential interest during cellulosic bioethanol production as purchasing enzymes is one of the largest expenses in the process. By recycling enzymes after distillation, loss of sugars and ethanol are avoided, but depending on the distillation temperature, there is a potential risk of enzyme degradation. Studies of the rate of enzyme denaturation based on estimation of the denaturation constant K D was performed using a novel distillation setup allowing stripping of ethanol at 50–65 °C. Experiments were performed in a pilot-scale stripper, where the effect of temperature (55–65 °C) and exposure to gas–liquid and liquid–heat transmission interfaces were tested on a mesophilic and thermostable enzyme mixture in fiber beer and buffer. Lab-scale tests were included in addition to the pilot-scale experiments to study the effect of shear, ethanol concentration, and PEG on enzyme stability. When increasing the temperature (up to 65 °C) or ethanol content (up to 7.5 % w/v), the denaturation rate of the enzymes increased. Enzyme denaturation occurred slower when the experiments were performed in fiber beer compared to buffer only, which could be due to PEG or other stabilizing substances in fiber beer. However, at extreme conditions with high temperature (65 °C) and ethanol content (7.5 % w/v), PEG had no enzyme stabilizing effect. The novel distillation setup proved to be useful for maintaining enzyme activity during ethanol extraction.  相似文献   
107.
Complex diseases may be associated with combinations of changes in DNA, where the single change has little impact alone. In a previous study of patients with bipolar disorder and controls combinations of SNP genotypes were analyzed, and four large clusters of combinations were found to be significantly associated with bipolar disorder. It has now been found that these clusters may be connected to clinical data.  相似文献   
108.

Aim

To determine whether QuantiFERON®-TB Gold In-Tube (QFT) can contribute to the diagnosis of active tuberculosis (TB) in children in a high-burden setting and to assess the performance of QFT and tuberculin skin test (TST) in a prospective cohort of TB suspect children compared to adults with confirmed TB in Tanzania.

Methods

Sensitivity and specificity of QFT and TST for diagnosing active TB as well as indeterminate QFT rates and IFN-γ levels were assessed in 211 TB suspect children in a Tanzanian district hospital and contrasted in 90 adults with confirmed pulmonary TB.

Results

Sensitivity of QFT and TST in children with confirmed TB was 19% (5/27) and 6% (2/31) respectively. In adults sensitivity of QFT and TST was 84% (73/87) and 85% (63/74). The QFT indeterminate rate in children and adults was 27% and 3%. Median levels of IFN-γ were lower in children than adults, particularly children <2 years and HIV infected. An indeterminate result was associated with age <2 years but not malnutrition or HIV status. Overall childhood mortality was 19% and associated with an indeterminate QFT result at baseline.

Conclusion

QFT and TST showed poor performance and a surprisingly low sensitivity in children. In contrast the performance in Tanzanian adults was good and comparable to performance in high-income countries. Indeterminate results in children were associated with young age and increased mortality. Neither test can be recommended for diagnosing active TB in children with immature or impaired immunity in a high-burden setting.  相似文献   
109.
N Yang  M Inaki  A Cliffe  P Rørth 《PloS one》2012,7(7):e40632
The environment through which cells migrate in vivo differs considerably from the in vitro environment where cell migration is often studied. In vivo many cells migrate in crowded and complex 3-dimensional tissues and may use other cells as the substratum on which they move. This includes neurons, glia and their progenitors in the brain. Here we use a Drosophila model of invasive, collective migration in a cellular environment to investigate the roles of microtubules and microtubule regulators in this type of cell movement. Border cells are of epithelial origin and have no visible microtubule organizing center (MTOC). Interestingly, microtubule plus-end growth was biased away from the leading edge. General perturbation of the microtubule cytoskeleton and analysis by live imaging showed that microtubules in both the migrating cells and the substrate cells affect movement. Also, whole-tissue and cell autonomous deletion of the microtubule regulator Stathmin had distinct effects. A screen of 67 genes encoding microtubule interacting proteins uncovered cell autonomous requirements for Lis-1, NudE and Dynein in border cell migration. Net cluster migration was decreased, with initiation of migration and formation of dominant front cell protrusion being most dramatically affected. Organization of cells within the cluster and localization of cell-cell adhesion molecules were also abnormal. Given the established role of Lis-1 in migrating neurons, this could indicate a general role of Lis-1/NudE, Dynein and microtubules, in cell-on-cell migration. Spatial regulation of cell-cell adhesion may be a common theme, consistent with observing both cell autonomous and non-autonomous requirements in both systems.  相似文献   
110.
The amount of weight loss induced by exercise is often disappointing. A diet-induced negative energy balance triggers compensatory mechanisms, e.g., lower metabolic rate and increased appetite. However, knowledge about potential compensatory mechanisms triggered by increased aerobic exercise is limited. A randomized controlled trial was performed in healthy, sedentary, moderately overweight young men to examine the effects of increasing doses of aerobic exercise on body composition, accumulated energy balance, and the degree of compensation. Eighteen participants were randomized to a continuous sedentary control group, 21 to a moderate-exercise (MOD; 300 kcal/day), and 22 to a high-exercise (HIGH; 600 kcal/day) group for 13 wk, corresponding to ~30 and 60 min of daily aerobic exercise, respectively. Body weight (MOD: -3.6 kg, P < 0.001; HIGH: -2.7 kg, P = 0.01) and fat mass (MOD: -4.0 kg, P < 0.001 and HIGH: -3.8 kg, P < 0.001) decreased similarly in both exercise groups. Although the exercise-induced energy expenditure in HIGH was twice that of MOD, the resulting accumulated energy balance, calculated from changes in body composition, was not different (MOD: -39.6 Mcal, HIGH: -34.3 Mcal, not significant). Energy balance was 83% more negative than expected in MOD, while it was 20% less negative than expected in HIGH. No statistically significant changes were found in energy intake or nonexercise physical activity that could explain the different compensatory responses associated with 30 vs. 60 min of daily aerobic exercise. In conclusion, a similar body fat loss was obtained regardless of exercise dose. A moderate dose of exercise induced a markedly greater than expected negative energy balance, while a higher dose induced a small but quantifiable degree of compensation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号