首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   37篇
  239篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   9篇
  2015年   12篇
  2014年   6篇
  2013年   15篇
  2012年   13篇
  2011年   12篇
  2010年   10篇
  2009年   4篇
  2008年   12篇
  2007年   14篇
  2006年   9篇
  2005年   8篇
  2004年   10篇
  2003年   9篇
  2002年   8篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1966年   2篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
51.
Calsequestrin (CASQ) exists as two distinct isoforms CASQ1 and CASQ2 in all vertebrates. Although the isoforms exhibit unique functional characteristic, the structural basis for the same is yet to be fully defined. Interestingly, the C‐terminal region of the two isoforms exhibit significant differences both in length and amino acid composition; forming Dn‐motif and DEXn‐motif in CASQ1 and CASQ2, respectively. Here, we investigated if the unique C‐terminal motifs possess Ca2+‐sensitivity and affect protein function. Sequence analysis shows that both the Dn‐ and DEXn‐motifs are intrinsically disordered regions (IDRs) of the protein, a feature that is conserved from fish to man. Using purified synthetic peptides, we show that these motifs undergo distinctive Ca2+‐mediated folding suggesting that these disordered motifs are Ca2+‐sensitivity. We generated chimeric proteins by swapping the C‐terminal portions between CASQ1 and CASQ2. Our studies show that the C‐terminal portions do not play significant role in protein folding. An interesting finding of the current study is that the switching of the C‐terminal portion completely reverses the polymerization kinetics. Collectively, these data suggest that these Ca2+‐sensitivity IDRs located at the back‐to‐back dimer interface influence isoform‐specific Ca2+‐dependent polymerization properties of CASQ. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 15–22, 2015.  相似文献   
52.
53.
Electrochemically active composite film that contains multiwalled carbon nanotubes (MWCNTs), Nafion (NF), and poly(malachite green) (PMG) has been synthesized on glassy carbon electrode (GCE), gold, and indium tin oxide (ITO) electrodes by potentiodynamic method. The presence of MWCNTs in the composite film (MWCNT–NF–PMG) enhances the surface coverage concentration (Γ) of PMG by fivefold. Similarly, an electrochemical quartz crystal microbalance study revealed enhancement in the deposition of PMG at MWCNT–NF film when compared with bare and only NF modified electrodes. The surface morphology of the composite film was studied using atomic force microscopy, which revealed that the PMG incorporated on MWCNT–NF film. The composite film exhibited enhanced electrocatalytic activity toward the mixture of biochemical compounds catechol and quinol. The electrocatalytic responses of analytes at MWCNT–NF–PMG composite film were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electrocatalysis studies, well-separated voltammetric peaks were obtained at the composite film for catechol and quinol with a peak separation of 147 mV. The sensitivity values of the composite film toward catechol and quinol by the DPV technique were 0.4 and 3.2 mA mM−1 cm−2, respectively, which are higher than the values obtained by the CV technique. Similarly, the above-mentioned values are better than the previously reported electroanalytical values for the same analytes.  相似文献   
54.
We have investigated the developmental transitions of myosin heavy chain (MHC) gene expression in the rat extraocular musculature (EOM) at the mRNA level using S1-nuclease mapping techniques and at the protein level by polypeptide mapping and immunochemistry. We have isolated a genomic clone, designated lambda 10B3, corresponding to an MHC gene which is expressed in the EOM fibers (recti and oblique muscles) of the adult rat but not in hind limb muscles. Using cDNA and genomic probes for MHC genes expressed in skeletal (embryonic, neonatal, fast oxidative, fast glycolytic, and slow/cardiac beta-MHC), cardiac (alpha-MHC), and EOM (lambda 10B3) muscles, we demonstrate the concomitant expression at the mRNA level of at least six different MHC genes in adult EOM. Protein and immunochemical analyses confirm the presence of at least four different MHC types in EOM. Immunocytochemistry demonstrates that different myosin isozymes tend to segregate into individual myofibers, although some fibers seem to contain more than one MHC type. The results also show that the EOM fibers exhibit multiple patterns of MHC gene regulation. One set of fibers undergoes a sequence of isoform transitions similar to the one described for limb skeletal muscles, whereas other EOM myofiber populations arrest the MHC transition at the embryonic, neonatal/adult, or adult EOM-specific stage. Thus, the MHC gene family is not under the control of a strict developmental clock, but the individual genes can modify their expression by tissue-specific and/or environmental factors.  相似文献   
55.
The decay of evanescent field intensity beyond a dielectric interface depends upon beam incident angle, enabling the 3-d distribution of fluorophores to be deduced from total internal reflection fluorescence microscopy (TIRFM) images obtained at multiple incident angles. Instrumentation was constructed for computer-automated multiple angle-TIRFM (MA-TIRFM) using a right angle F2 glass prism (n(r) 1.632) to create the dielectric interface. A laser beam (488 nm) was attenuated by an acoustooptic modulator and directed onto a specified spot on the prism surface. Beam incident angle was set using three microstepper motors controlling two rotatable mirrors and a rotatable optical flat. TIRFM images were acquired by a cooled CCD camera in approximately 0.5 degree steps for >15 incident angles starting from the critical angle. For cell studies, cells were grown directly on the glass prisms (without refractive index-matching fluid) and positioned in the optical path. Images of the samples were acquired at multiple angles, and corrected for angle-dependent evanescent field intensity using "reference" images acquired with a fluorophore solution replacing the sample. A theory was developed to compute fluorophore z-distribution by inverse Laplace transform of angle-resolved intensity functions. The theory included analysis of multiple layers of different refractive index for cell studies, and the anisotropic emission from fluorophores near a dielectric interface. Instrument performance was validated by mapping the thickness of a film of dihexyloxacarbocyanine in DMSO/water (n(r) 1.463) between the F2 glass prism and a plano-convex silica lens (458 mm radius, n(r) 1.463); the MA-TIRFM map accurately reproduced the lens spherical surface. MA-TIRFM was used to compare with nanometer z-resolution the geometry of cell-substrate contact for BCECF-labeled 3T3 fibroblasts versus MDCK epithelial cells. These studies establish MA-TIRFM for measurement of submicroscopic distances between fluorescent probes and cell membranes.  相似文献   
56.
57.
The complete nucleotide sequence and exon/intron structure of the rat embryonic skeletal muscle myosin heavy chain (MHC) gene has been determined. This gene comprises 24 X 10(3) bases of DNA and is split into 41 exons. The exons encode a 6035 nucleotide (nt) long mRNA consisting of 90 nt of 5' untranslated, 5820 nt of protein coding and 125 nt of 3' untranslated sequence. The rat embryonic MHC polypeptide is encoded by exons 3 to 41 and contains 1939 amino acid residues with a calculated Mr of 223,900. Its amino acid sequence displays the structural features typical for all sarcomeric MHCs, i.e. an amino-terminal "globular" head region and a carboxy-terminal alpha-helical rod portion that shows the characteristics of a coiled coil with a superimposed 28-residue repeat pattern interrupted at only four positions by "skip" residues. The complex structure of the rat embryonic MHC gene and the conservation of intron locations in this and other MHC genes are indicative of a highly split ancestral sarcomeric MHC gene. Introns in the rat embryonic gene interrupt the coding sequence at the boundaries separating the proteolytic subfragments of the head, but not at the head/rod junction or between the 28-residue repeats present within the rod. Therefore, there is little evidence for exon shuffling and intron-dependent evolution by gene duplication as a mechanism for the generation of the ancestral MHC gene. Rather, intron insertion into a previously non-split ancestral MHC rod gene consisting of multiple tandemly arranged 28-residue-encoding repeats, or convergent evolution of an originally non-repetitive ancestral MHC rod gene must account for the observed structure of the rod-encoding portion of present-day MHC genes.  相似文献   
58.
1. 5,6-Monoepoxy-beta-carotene and 5,6:5',6'-diepoxy-beta-carotene were partially converted into the furanoid forms during passage through the rat stomach. 2. The monoepoxide was converted into vitamin A in the small intestine and showed a biological potency 21% of that of beta-carotene. Neither beta-carotene nor 5,6-monoepoxyvitamin A was formed. 3. Intraperitoneal administration of the monoepoxide led to the accumulation of the unchanged compound in the liver and other tissues. 4. The diepoxide gave no beta-carotene or vitamin A or 5,6-monoepoxyvitamin A when given orally and showed no biological potency. 5. The significance of these results with special reference to the mechanism of formation of vitamin A from beta-carotene is discussed.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号