全文获取类型
收费全文 | 157篇 |
免费 | 30篇 |
专业分类
187篇 |
出版年
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 1篇 |
2016年 | 9篇 |
2015年 | 10篇 |
2014年 | 6篇 |
2013年 | 12篇 |
2012年 | 10篇 |
2011年 | 10篇 |
2010年 | 7篇 |
2009年 | 4篇 |
2008年 | 13篇 |
2007年 | 13篇 |
2006年 | 7篇 |
2005年 | 6篇 |
2004年 | 7篇 |
2003年 | 8篇 |
2002年 | 7篇 |
2001年 | 3篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1998年 | 5篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1993年 | 5篇 |
1992年 | 6篇 |
1991年 | 3篇 |
1990年 | 2篇 |
1989年 | 6篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1982年 | 1篇 |
1979年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有187条查询结果,搜索用时 15 毫秒
71.
Porphyromonas gingivalis is present in dental plaque as early as 4 h after tooth cleaning, but it is also associated with periodontal disease, a late-developing event in the microbial successions that characterize daily plaque development. We report here that P. gingivalis ATCC 33277 is remarkable in its ability to interact with a variety of initial, early, middle, and late colonizers growing solely on saliva. Integration of P. gingivalis into multispecies communities was investigated by using two in vitro biofilm models. In flow cells, bacterial growth was quantified using fluorescently conjugated antibodies against each species, and static biofilm growth on saliva-submerged polystyrene pegs was analyzed by quantitative real-time PCR using species-specific primers. P. gingivalis could not grow as a single species or together with initial colonizer Streptococcus oralis but showed mutualistic growth when paired with two other initial colonizers, Streptococcus gordonii and Actinomyces oris, as well as with Veillonella sp. (early colonizer), Fusobacterium nucleatum (middle colonizer), and Aggregatibacter actinomycetemcomitans (late colonizer). In three-species flow cells, P. gingivalis grew with Veillonella sp. and A. actinomycetemcomitans but not with S. oralis and A. actinomycetemcomitans. Also, it grew with Veillonella sp. and F. nucleatum but not with S. oralis and F. nucleatum, indicating that P. gingivalis and S. oralis are not compatible. However, P. gingivalis grew in combination with S. gordonii and S. oralis, demonstrating its ability to overcome the incompatibility when cultured with a second initially colonizing species. Collectively, these data help explain the observed presence of P. gingivalis at all stages of dental plaque development.Removal of dental plaque by routine oral hygiene procedures is followed by a repetition of a species succession that starts with initially colonizing streptococci and actinomyces (5, 16). Other species follow as early, middle, and late colonizers, which establishes the following developmental process: successive attachment of saliva-suspended species to already attached bacteria and formation of multispecies communities.Attachment is a critical event essential to preventing the bacteria from being swallowed by salivary flow. Initial colonizers bind to host-derived receptors in the salivary pellicle coating of the tooth enamel. The remainder of typical plaque development occurs by accretion of saliva-suspended species and growth of attached bacteria, thereby increasing the microbial diversity. Adherence of suspended single cells to attached cells is called coadhesion (1). Some suspended cells are already coaggregated and adhere to attached cells as coaggregates; coaggregation is defined as the specific cell-to-cell recognition and adherence of genetically distinct cell types (8). All human oral bacterial species exhibit coaggregation. For example, Streptococcus oralis coaggregates with Streptococcus gordonii (intrageneric coaggregation). Both species pair with Actinomyces oris (intergeneric coaggregation), and all of them coaggregate with Fusobacterium nucleatum (multigeneric coaggregation). Multispecies communities composed of coaggregating species characterize dental plaque biofilms in vivo (3, 17, 18).To increase our understanding of interactions among species, we have employed two in vitro model systems and are testing numerous combinations of seven species for their ability to grow on saliva as their sole nutritional source (20, 21). First, we reported that F. nucleatum (middle colonizer) failed to grow when paired with S. oralis but grew well when A. oris was included in the three-species biofilm (20), indicating specificity by F. nucleatum for the presence of a particular initial colonizer. Recently, we showed that Aggregatibacter actinomycetemcomitans (late colonizer and periodontopathogen) exhibited mutualistic relationships with F. nucleatum and Veillonella sp. (early colonizer and commensal organism), illustrating the ability of commensals and pathogens to grow together (21).Porphyromonas gingivalis, another periodontopathogen, forms three-species communities with F. nucleatum and S. gordonii (11). Proteomics of P. gingivalis in this three-species community revealed a broad increase in proteins involved in protein synthesis, suggesting that a multispecies relationship is advantageous for the porphyromonad (11). This research group had previously reported the presence of differentially regulated porphyromonad genes when P. gingivalis and S. gordonii were together in biofilms (22). Thus, P. gingivalis responds to the presence of other oral species.P. gingivalis is detected in dental plaque samples within 6 h after professional tooth cleaning (5, 13), and its numbers increase in periodontally diseased sites (15). It forms biofilms with S. gordonii but not with Streptococcus mutans (12) or Streptococcus cristatus (23). P. gingivalis required a preformed streptococcal substratum for its incorporation into a biofilm (12). Partner specificity was also noted among four fresh isolates of P. gingivalis, which showed no coaggregation with a variety of oral actinomyces, aggregatibacteria, capnocytophagae, and streptococci (9) but coaggregated with F. nucleatum (7, 10). We show here that P. gingivalis exhibits widespread mutualism with initial, early, middle, and late colonizers but also shows specificity with initially colonizing streptococci, which could help explain its early appearance in the development of dental plaque biofilms. The relationship of porphyromonads with initial, early, middle, and later colonizers during biofilm growth on saliva as a sole nutritional source has not been explored previously. We hypothesize that the ability of P. gingivalis to coaggregate with S. gordonii and A. oris (initial colonizers), Veillonella sp. (early colonizer), F. nucleatum (middle colonizer), and A. actinomycetemcomitans (late colonizer) allows these bacteria to form multispecies biofilm communities. 相似文献
72.
Leslie A. Rowland Naresh C. Bal Muthu Periasamy 《Biological reviews of the Cambridge Philosophical Society》2015,90(4):1279-1297
Thermogenesis is one of the most important homeostatic mechanisms that evolved during vertebrate evolution. Despite its importance for the survival of the organism, the mechanistic details behind various thermogenic processes remain incompletely understood. Although heat production from muscle has long been recognized as a thermogenic mechanism, whether muscle can produce heat independently of contraction remains controversial. Studies in birds and mammals suggest that skeletal muscle can be an important site of non‐shivering thermogenesis (NST) and can be recruited during cold adaptation, although unequivocal evidence is lacking. Much research on thermogenesis during the last two decades has been focused on brown adipose tissue (BAT). These studies clearly implicate BAT as an important site of NST in mammals, in particular in newborns and rodents. However, BAT is either absent, as in birds and pigs, or is only a minor component, as in adult large mammals including humans, bringing into question the BAT‐centric view of thermogenesis. This review focuses on the evolution and emergence of various thermogenic mechanisms in vertebrates from fish to man. A careful analysis of the existing data reveals that muscle was the earliest facultative thermogenic organ to emerge in vertebrates, long before the appearance of BAT in eutherian mammals. Additionally, these studies suggest that muscle‐based thermogenesis is the dominant mechanism of heat production in many species including birds, marsupials, and certain mammals where BAT‐mediated thermogenesis is absent or limited. We discuss the relevance of our recent findings showing that uncoupling of sarco(endo)plasmic reticulum Ca2+‐ATPase (SERCA) by sarcolipin (SLN), resulting in futile cycling and increased heat production, could be the basis for NST in skeletal muscle. The overall goal of this review is to highlight the role of skeletal muscle as a thermogenic organ and provide a balanced view of thermogenesis in vertebrates. 相似文献
73.
Jennifer M. Petrosino Valerie J. Heiss Santosh K. Maurya Anuradha Kalyanasundaram Muthu Periasamy Richard A. LaFountain Jacob M. Wilson Orlando P. Simonetti Ouliana Ziouzenkova 《PloS one》2016,11(2)
Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics. 相似文献
74.
Similarity of fluorescence lifetime distributions for single tryptophan proteins in the random coil state. 总被引:3,自引:1,他引:3 下载免费PDF全文
The picosecond time-resolved fluorescence decay data of nine single-tryptophan (trp) proteins and two multi-trp proteins in their native and denatured states were analyzed by the maximum entropy method (MEM). In the denatured state (6 M guanidine hydrochloride) a majority of the single-trp proteins show bimodal (at 25 degrees C) and trimodal (at 85 degrees C) distributions with similar patterns and similar values for average lifetimes. In the native state of the proteins the lifetime distributions were bimodal or trimodal. These results (multimodal distributions) are contradictory to the unimodal Lorentzian distribution of lifetimes reported for some proteins in the native and denatured states. MEM analysis gives a unimodal distribution of lifetimes only when the signal-to-noise ratio is poor in the time-resolved fluorescence decay data. The unimodal distribution model is therefore not realistic for proteins in the native and denatured states. The fluorescence decay components of the bi- or trimodal distribution are associated with the rotamer structures of the indole moiety when the protein is in the random coil state. 相似文献
75.
The location and orientation of a linear dye molecule, DODCI, in lipid bilayer membrane were determined by the effect of viscosity and refractive index of the aqueous medium on the fluorescence properties of the dye bound to the membrane. The membrane-bound dye is solubilized in two sites, one near the surface (short fluorescence lifetime) and another in the interior of the membrane (long lifetime). The ratio of the dye in the two locations and the orientation of the dye (parallel or perpendicular to the membrane) are sensitive to the lipid chain length and unsaturation in the alkyl chain. The fraction of the dye in the interior region is higher for short alkyl chains (C12>C14>C16>C18C20) and in unsaturated lipids (C14:1>C14:0, C16:1>C16:0). These experimental results are consistent with the general principle that the penetration of an amphiphilic organic molecule in the interior region of the membrane is more when the structure of th bilayer is more fluid-like. 相似文献
76.
77.
78.
Two-dimensional kinetics regulation of alphaLbeta2-ICAM-1 interaction by conformational changes of the alphaL-inserted domain 总被引:1,自引:0,他引:1
Zhang F Marcus WD Goyal NH Selvaraj P Springer TA Zhu C 《The Journal of biological chemistry》2005,280(51):42207-42218
The leukocyte integrin alphaLbeta2 mediates cell adhesion and migration during inflammatory and immune responses. Ligand binding of alphaLbeta2 is regulated by or induces conformational changes in the inserted (I) domain. By using a micropipette, we measured the conformational regulation of two-dimensional (2D) binding affinity and the kinetics of cell-bound intercellular adhesion molecule-1 interacting with alphaLbeta2 or isolated I domain expressed on K562 cells. Locking the I domain into open and intermediate conformations with a disulfide bond increased the affinities by approximately 8000- and approximately 30-fold, respectively, from the locked closed conformation, which has similar affinity as the wild-type I domain. Most surprisingly, the 2D affinity increases were due mostly to the 2D on-rate increases, as the 2D off-rates only decreased by severalfold. The wild-type alphaLbeta2, but not its I domain in isolation, could be up-regulated by Mn2+ or Mg2+ to have high affinities and on-rates. Locking the I domain in any of the three conformations abolished the ability of divalent cations to regulate 2D affinity. These results indicate that a downward displacement of the I domain C-terminal helix, induced by conformational changes of other domains of the alphaLbeta2, is required for affinity and on-rate up-regulation. 相似文献
79.
Venkadapathi Jeyanthi Periasamy Anbu Mariappanadar Vairamani Palaniyandi Velusamy 《Bioprocess and biosystems engineering》2016,39(3):429-439
A halotolerant bacterial isolate-MHC10 with broad spectrum antibacterial activity against clinical pathogens was isolated from saltpans located in Tuticorin and Chennai (India). 16S rRNA gene analysis of MHC10 revealed close similarity to that of Bacillus methylotrophicus. The culture conditions of B. methylotrophicus MHC10 strain were optimized for antibacterial production using different carbon and nitrogen sources, as well as varying temperature, pH, sodium chloride (NaCl) concentrations and incubation periods. The maximum antibacterial activity of B. methylotrophicus MHC10 was attained when ZMB was optimized with 1 % (w/v) glucose, 0.1 % (w/v) soybean meal which corresponded to a C/N ratio of 38.83, temperature at 37 °C, pH 7.0 and 8 % NaCl. The activity remained stable between 72 and 96 h and then drastically decreased after 96 h. Solvent extraction followed by chromatographic purification steps led to the isolation of hydroquinone (benzene-1,4-diol). The structure of the purified compound was elucidated based on FTIR, 1H NMR, and 13C NMR spectroscopy. The compound exhibited efficient antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. The minimum inhibitory concentration (MIC) for Gram-positive pathogens ranged from 15.625 to 62.5 µg/mL?1, while it was between 7.81 and 250 µg/mL?1 for Gram-negative bacterial pathogens. This is the first report of hydroquinone produced by halotolerant B. methylotrophicus exhibiting promising antibacterial activity. 相似文献
80.
Kai Wei Kelvin Lee Joey Kuok Hoong Yam Manisha Mukherjee Saravanan Periasamy Peter D Steinberg Staffan Kjelleberg Scott A Rice 《The ISME journal》2016,10(4):846-857
Diversity has a key role in the dynamics and resilience of communities and both interspecific (species) and intraspecific (genotypic) diversity can have important effects on community structure and function. However, a critical and unresolved question for understanding the ecology of a community is to what extent these two levels of diversity are functionally substitutable? Here we show, for a mixed-species biofilm community composed of Pseudomonas aeruginosa, P. protegens and Klebsiella pneumoniae, that increased interspecific diversity reduces and functionally substitutes for intraspecific diversity in mediating tolerance to stress. Biofilm populations generated high percentages of genotypic variants, which were largely absent in biofilm communities. Biofilms with either high intra- or interspecific diversity were more tolerant to SDS stress than biofilms with no or low diversity. Unexpectedly, genotypic variants decreased the tolerance of biofilm communities when experimentally introduced into the communities. For example, substituting P. protegens wild type with its genotypic variant within biofilm communities decreased SDS tolerance by twofold, apparently due to perturbation of interspecific interactions. A decrease in variant frequency was also observed when biofilm populations were exposed to cell-free effluents from another species, suggesting that extracellular factors have a role in selection against the appearance of intraspecific variants. This work demonstrates the functional substitution of inter- and intraspecific diversity for an emergent property of biofilms. It also provides a potential explanation for a long-standing paradox in microbiology, in which morphotypic variants are common in laboratory grown biofilm populations, but are rare in diverse, environmental biofilm communities. 相似文献