首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   30篇
  187篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   9篇
  2015年   10篇
  2014年   6篇
  2013年   12篇
  2012年   10篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   13篇
  2007年   13篇
  2006年   7篇
  2005年   6篇
  2004年   7篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有187条查询结果,搜索用时 10 毫秒
111.
Physiological properties of organism, such as the number of chromosomes, genome size, fatty acid profile and the activities of desaturases and elongases were investigated for four differentThraustochytrium species. The investigation revealed thatThraustochytrium aureum could synthesize a significant level of polyunsaturated fatty acids (PUFAs), particularly docosa-hexaenoic acid (DHA), when compared to the other threeThraustochytrium species tested. A higher level of saturated fatty acids was observed byT. striatum followed byThraustochytrium sp. ATCC 26185. The PUFA accumulation rate was higher in the n-3 than in the n-6 pathway. A comparison of the activities for these desaturases and elongases of the four different species were also studied. Further, the electrophoretic karyotypes of Thraustochytrids were separated by pulsed-field gel electrophoresis (PFGE). The separation condition of PFGE was developed to obtain the different chromosomes from the variousThraustochytrium species. The number of chromosomes inT. aureum, T. striatum, Thraustochytrium sp. ATCC 20891 andThraustochytrium sp. ATCC 26185 were 13, 17, 10. 8, and the whole genome size of those species were estimated to be 12.9, 11.7, 11.3 and 9.93 Mbp, respectively.  相似文献   
112.
We investigated the therapeutic effect of sesamol against monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats. Male Sprague–Dawley rats were gavaged with a single dose of monocrotaline (90 mg/kg) to induce SOS. Sesamol (5, 10, 20, and 40 mg/kg) was subcutaneously injected 24 h after monocrotaline treatment. Control rats were given saline only. Aspartate transaminase, alanine transaminase, mast cells, CD 68+ Kupffer cells, neutrophils, myeloperoxidase, matrix metalloproteinase-9 (MMP-9), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), laminin, and collagen were assessed 48 h after monocrotaline treatment. All tested parameters, except for TIMP-1, laminin, and collagen, were significantly higher in monocrotaline-treated rats than in control rats, and, except for TIMP-1, laminin, and collagen, significantly lower in sesamol-treated rats than in monocrotaline-treated rats. In addition, liver pathology revealed that sesamol offered significant protection against SOS. We conclude that a single dose of sesamol therapeutically attenuated SOS by decreasing the recruitment of inflammatory cells, downregulating MMP-9, and upregulating TIMP-1 expression.  相似文献   
113.
114.
The role of sarcolipin (SLN) in cardiac physiology was critically evaluated by generating a transgenic (TG) mouse model in which the SLN to sarco(endoplasmic)reticulum (SR) Ca(2+) ATPase (SERCA) ratio was increased in the ventricle. Overexpression of SLN decreases SR calcium transport function and results in decreased calcium transient amplitude and rate of relaxation. SLN TG hearts exhibit a significant decrease in rates of contraction and relaxation when assessed by ex vivo work-performing heart preparations. Similar results were also observed with muscle preparations and myocytes from SLN TG ventricles. Interestingly, the inhibitory effect of SLN was partially relieved upon high dose of isoproterenol treatment and stimulation at high frequency. Biochemical analyses show that an increase in SLN level does not affect PLB levels, monomer to pentamer ratio, or its phosphorylation status. No compensatory changes were seen in the expression of other calcium-handling proteins. These studies suggest that the SLN effect on SERCA pump is direct and is not mediated through increased monomerization of PLB or by a change in PLB phosphorylation status. We conclude that SLN is a novel regulator of SERCA pump activity, and its inhibitory effect can be reversed by beta-adrenergic agonists.  相似文献   
115.
High hydrostatic pressure (HHP) is suggested to influence the structure and function of membranes and/or integrated proteins. We demonstrate for the first time HHP-induced dimer dissociation of membrane proteins in vivo with Vibrio cholerae ToxR variants in Escherichia coli reporter strains carrying ctx::lacZ fusions. Dimerization ceased at 20 to 50 MPa depending on the nature of the transmembrane segments rather than on changes in the ToxR lipid bilayer environment.  相似文献   
116.
Oral cancer is one of the most common cancers in the world. Drugs can modulate the expression of drug metabolizing enzymes and are useful in chemoprevention as well as therapy in cancer. 4-Nitroquinoline 1-oxide (4-NQO) is used to induce oral cancer in the present study. In the present investigation, the effect of green tea polyphenols (GTP) on the activities of cytochrome b5, cytochrome P450, cytochrome b5 reductase (cyt b5 R), cytochrome P450 reductase (cyt P450 R), arryl hydrocarbon hydroxylase (AHH), DT-diaphorase (DTD)(Phase I enzymes) and glutathione-S-transferase (GST) and UDP-glucuronyl transferase (UDP-GT) (Phase II enzymes) were assessed in tongue and oral cavity. In induced rats, there was a decrease in the activity of Phase II enzymes and an increase in the activity of Phase I enzymes. On supplementation of GTP by both simultaneous and post treatment mode (200mg/kg) there was a significant increase in the activity of GST and UDP-GT and a significant decrease in the activity of Phase I enzymes. There was a significant decline in the number of tumors, tumor volume and oral squamous cell carcinoma in both simultaneous and post GTP treated animals relative to 4-NQO induced animals; on comparing simultaneous and post GTP treated animals the number of tumors, tumor volume and oral squamous cell carcinoma was significantly reduced in post treated animals. Thus inhibition of Phase I enzymes could be attributed to the protective efficacy of GTP which deactivates carcinogen and GTP induced the expression of Phase II enzymes that detoxifies the 4-NQO. It can be proposed that GTP plays role as a detoxifying agent by which its modulating role prevented/inhibited the formation of tumor.  相似文献   
117.
Silica (E551) is commonly used as an anti-caking agent in food products. The morphology and the dimension of the added silica particles are not, however, usually stated on the food product label. The food industry has adapted nanotechnology using engineered nanoparticles to improve the quality of their products. However, there has been increased debate regarding the health and safety concerns related to the use of engineered nanoparticles in consumer products. In this study, we investigated the morphology and dimensions of silica (E551) particles in food. The silica content of commercial food products was determined using inductively coupled plasma optical emission spectrometry. The result indicates that 2.74–14. 45 μg/g silica was found in commercial food products; however, the daily dietary intake in increase causes adverse effects on human health. E551 was isolated from food products and the morphology, particle size, crystalline nature, and purity of the silica particles were analyzed using XRD, FTIR, TEM, EDX and DLS. The results of these analyses confirmed the presence of spherical silica nanoparticles (of amorphous nature) in food, approximately 10–50 nm in size. The effects of E551 on human lung fibroblast cell viability, intracellular ROS levels, cell cycle phase, and the expression levels of metabolic stress-responsive genes (CAT, GSTA4, TNF, CYP1A, POR, SOD1, GSTM3, GPX1, and GSR1) were studied. The results suggest that E551 induces a dose-dependent cytotoxicity and changes in ROS levels and alters the gene expression and cell cycle. Treatment with a high concentration of E551 caused significant cytotoxic effects on WI-38 cells. These findings have implications for the use of these nanoparticles in the food industry.  相似文献   
118.
Physical exercise is an important and effective therapy for diabetes. However, its underlying mechanism is not fully understood. Protein kinase Cβ (PKCβ) has been suggested to be involved in the pathogenesis of obesity and insulin resistance, but the role of PKCβ in exercise-induced improvements in insulin resistance is completely unknown. In this study, we evaluated the involvement of PKCβ in exercise-attenuated insulin resistance in high-fat diet (HFD)-fed mice. PKCβ-/- and wild-type mice were fed a HFD with or without exercise training. PKC protein expression, body and tissue weight change, glucose and insulin tolerance, metabolic rate, mitochondria size and number, adipose inflammation, and AKT activation were determined to evaluate insulin sensitivity and metabolic changes after intervention. PKCβ expression decreased in both skeletal muscle and liver tissue after exercise. Exercise and PKCβ deficiency can alleviate HFD-induced insulin resistance, as evidenced by improved insulin tolerance. In addition, fat accumulation and mitochondrial dysfunction induced by HFD were also ameliorated by both exercise and PKCβ deficiency. On the other hand, exercise had little effect on PKCβ-/- mice. Further, our data indicated improved activation of AKT, the downstream signal molecule of insulin, in skeletal muscle and liver of exercised mice, whereas PKCβ deficiency blunted the difference between sedentary and exercised mice. These results suggest that downregulation of PKCβ contributes to exercise-induced improvement of insulin resistance in HFD-fed mice.  相似文献   
119.
We previously completed whole-genome sequencing of a rare actinomycete named Sebekia benihana, and identified the complete S. benihana cytochrome P450 complement (CYPome), including 21 cytochrome P450 hydroxylase (CYP), seven ferredoxin (FD), and four ferredoxin reductase (FDR) genes. Through targeted CYPome disruption, a total of 32 S. benihana CYPome mutants were obtained. Subsequently, a novel cyclosporine A region-specific hydroxylase was successfully determined to be encoded by a CYP-sb21 gene by screening the S. benihana CYPome mutants. Here, we report that S. benihana is also able to mediate vitamin D3 (VD3) hydroxylation. Among the 32 S. benihana CYPome mutants tested, only a single S. benihana CYP mutant, ΔCYP-sb3a, failed to show regio-specific hydroxylation of VD3 to 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3. Moreover, the VD3 hydroxylation activity in the ΔCYP-sb3a mutant was restored by CYP-sb3a gene complementation. Since all S. benihana FD and FDR disruption mutants maintained VD3 hydroxylation activity, we conclude that CYP-sb3a, a member of the bacterial CYP107 family, is the only essential component of the in vivo regio-specific VD3 hydroxylation process in S. benihana. Expression of the CYP-sb3a gene exhibited VD3 hydroxylation in the VD3 non-hydroxylating Streptomyces coelicolor, implying that the regio-specific hydroxylation of VD3 is carried out by a specific P450 hydroxylase in S. benihana.  相似文献   
120.
Our senses of hearing and balance depend upon hair cells, the sensory receptors of the inner ear. Millions of people suffer from hearing and balance deficits caused by damage to hair cells as a result of exposure to noise, aminoglycoside antibiotics, and antitumor drugs. In some species such damage can be reversed through the production of new cells. This proliferative response is limited in mammals but it has been hypothesized that damaged hair cells might survive and undergo intracellular repair. We examined the fate of bullfrog saccular hair cells after exposure to a low dose of the aminoglycoside antibiotic gentamicin to determine whether hair cells could survive such treatment and subsequently be repaired. In organ cultures of the bullfrog saccule a combination of time-lapse video microscopy, two-photon microscopy, electron microscopy, and immunocytochemistry showed that hair cells can lose their hair bundle and survive as bundleless cells for at least 1 week. Time-lapse and electron microscopy revealed stages in the separation of the bundle from the cell body. Scanning electron microscopy (SEM) of cultures fixed 2, 4, and 7 days after antibiotic treatment showed that numerous new hair bundles were produced between 4 and 7 days of culture. Further examination revealed hair cells with small repaired hair bundles alongside damaged remnants of larger surviving bundles. The results indicate that sensory hair cells can undergo intracellular self-repair in the absence of mitosis, offering new possibilities for functional hair cell recovery and an explanation for non-proliferative recovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号