首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   51篇
  424篇
  2023年   2篇
  2021年   4篇
  2020年   8篇
  2019年   5篇
  2018年   6篇
  2017年   1篇
  2016年   17篇
  2015年   20篇
  2014年   18篇
  2013年   26篇
  2012年   27篇
  2011年   33篇
  2010年   15篇
  2009年   13篇
  2008年   28篇
  2007年   34篇
  2006年   29篇
  2005年   19篇
  2004年   16篇
  2003年   18篇
  2002年   15篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   6篇
  1992年   7篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1966年   1篇
排序方式: 共有424条查询结果,搜索用时 15 毫秒
61.
Protein interactions within regulatory networks should adapt in a spatiotemporal-dependent dynamic environment, in order to process and respond to diverse and versatile cellular signals. However, the principles governing recognition pliability in protein complexes are not well understood. We have investigated a region of the intrinsically disordered protein myelin basic protein (MBP(145-165)) that interacts with calmodulin, but that also promiscuously binds other biomolecules (membranes, modifying enzymes). To characterize this interaction, we implemented an NMR spectroscopic approach that calculates, for each conformation of the complex, the maximum occurrence based on recorded pseudocontact shifts and residual dipolar couplings. We found that the MBP(145-165)-calmodulin interaction is characterized by structural heterogeneity. Quantitative comparative analysis indicated that distinct conformational landscapes of structural heterogeneity are sampled for different calmodulin-target complexes. Such structural heterogeneity in protein complexes could potentially explain the way that transient and promiscuous protein interactions are optimized and tuned in complex regulatory networks.  相似文献   
62.
The genetic aspects of ori C replication initiation in Mycobacterium tuberculosis are largely unknown. A two-step genetic screen was utilized for isolating M. tuberculosis dna A cold-sensitive (cos) mutants. First, a resident plasmid expressing functional dna A integrated at the att B locus in dna A null background was exchanged with an incoming plasmid bearing a mutagenized dna A gene. Next, the mutants that were defective for growth at 30°C, a non-permissive temperature, but resumed growth and DNA synthesis when shifted to 37°C, a permissive temperature, were subsequently selected. Nucleotide sequencing analysis located mutations to different regions of the dna A gene. Modulation of the growth temperatures led to synchronized DNA synthesis. The dna A expression under synchronized DNA replication conditions continued to increase during the replication period, but decreased thereafter reflecting autoregulation. The dna Acos mutants at 30°C were elongated suggesting that they may possibly be blocked during the cell division. The DnaA115 protein is defective in its ability to interact with ATP at 30°C, but not at 37°C. Our results suggest that the optimal cell cycle progression and replication initiation in M. tuberculosis requires that the dna A promoter remains active during the replication period and that the DnaA protein is able to interact with ATP.  相似文献   
63.
Residue 116 of major histocompatibility complex (MHC) class I heavy chains is an important determinant of assembly, that can influence rates of ER-Golgi trafficking, binding to the transporter associated with antigen processing (TAP), tapasin dependence of assembly, and the efficiency and specificity of peptide binding. Here, we investigated assembly and peptide-binding differences between HLA-B*3501(S116) and HLA-B*3503(F116), two alleles differing only at position 116 of the MHC class I heavy chain, that are associated respectively with normal or rapid AIDS progression. A reduced intracellular maturation rate was observed for HLA-B*3503 in HIV-infected and uninfected cells, which correlated with enhanced binding of HLA-B*3503 to TAP. No significant differences in the intrinsic efficiency of in vitro peptide binding by HLA-B*3501 and HLA-B*3503 were measurable with several common peptides or peptide libraries, and both allotypes were relatively tapasin-independent for their assembly. However, thermostability differences between the two allotypes were measurable in a CD4+ T cell line. These findings suggest that compared to HLA-B*3501, a reduced intracellular peptide repertoire for HLA-B*3503 could contribute to its slower intracellular trafficking and stronger association with rapid AIDS progression.  相似文献   
64.
65.
66.
The transporter associated with antigen processing (TAP), a member of the ATP binding cassette (ABC) family of transmembrane transporters, transports peptides across the endoplasmic reticulum membrane for assembly of major histocompatibility complex class I molecules. Two subunits, TAP1 and TAP2, are required for peptide transport, and ATP hydrolysis by TAP1.TAP2 complexes is important for transport activity. Two nucleotide binding sites are present in TAP1.TAP2 complexes. Compared with other ABC transporters, the first nucleotide binding site contains non-consensus catalytic site residues, including Asp(668) in the Walker B region of TAP1 (in place of a highly conserved glutamic acid), and Gln(701) in the switch region of TAP1 (in place of a highly conserved histidine). At the second nucleotide binding site, a glutamic acid (TAP2 Glu(632)) follows the Walker B motif, and the switch region contains a histidine (TAP2 His(661)). We found that alterations at Glu(632) and His(661) of TAP2 significantly reduced peptide translocation and/or TAP-induced major histocompatibility complex class I surface expression. Alterations of TAP1 Asp(668) alone or in combination with TAP1 Gln(701) had only small effects on TAP activity. Thus, the naturally occurring Asp(668) and Gln(701) alterations of TAP1 are likely to contribute to attenuated catalytic activity at the first nucleotide binding site (the TAP1 site) of TAP complexes. Due to its enhanced catalytic activity, the second nucleotide binding site (the TAP2 site) appears to be the main site driving peptide transport. A mechanistic model involving one main active site is likely to apply to other ABC transporters that have an asymmetric distribution of catalytic site residues within the two nucleotide binding sites.  相似文献   
67.
Cardiac fibroblasts are reported to be relatively resistant to stress stimuli compared to cardiac myocytes and fibroblasts of non-cardiac origin. However, the mechanisms that facilitate their survival under conditions of stress remain unclear. We explored the possibility that NF-κB protects cardiac fibroblasts from hypoxia-induced cell death. Further, we examined the expression of the antiapoptotic cIAP-2 and Bcl-2 in hypoxic cardiac fibroblasts, and their possible regulation by NF-κB. Phase contrast microscopy and propidium iodide staining revealed that cardiac fibroblasts are more resistant than pulmonary fibroblasts to hypoxia. Electrophoretic Mobility Shift Assay showed that hypoxia activates NF-κB in cardiac fibroblasts. Supershift assay indicated that the active NF-κB complex is a p65/p50 heterodimer. An I-κB-super-repressor was constructed that prevented NF-κB activation and compromised cell viability under hypoxic but not normoxic conditions. Similar results were obtained with Bay 11-7085, an inhibitor of NF-κB. Western blot analysis showed constitutive levels of Bcl-2 and hypoxic induction of cIAP-2 in these cells. NF-κB inhibition reduced cIAP-2 but not Bcl-2 levels in hypoxic cardiac fibroblasts. The results show for the first time that NF-κB is an important effector of survival in cardiac fibroblasts under hypoxic stress and that regulation of cIAP-2 expression may contribute to its pro-survival role.  相似文献   
68.
Probing cationic selectivity of cardiac calsequestrin and its CPVT mutants   总被引:1,自引:0,他引:1  
CASQ (calsequestrin) is a Ca2+-buffering protein localized in the muscle SR (sarcoplasmic reticulum); however, it is unknown whether Ca2+ binding to CASQ2 is due to its location inside the SR rich in Ca2+ or due to its preference for Ca2+ over other ions. Therefore a major aim of the present study was to determine how CASQ2 selects Ca2+ over other metal ions by studying monomer folding and subsequent aggregation upon exposure to alkali (monovalent), alkaline earth (divalent) and transition (polyvalent) metals. We additionally investigated how CPVT (catecholaminergic polymorphic ventricular tachycardia) mutations affect CASQ2 structure and its molecular behaviour when exposed to different metal ions. Our results show that alkali and alkaline earth metals can initiate similar molecular compaction (folding), but only Ca2+ can promote CASQ2 to aggregate, suggesting that CASQ2 has a preferential binding to Ca2+ over all other metals. We additionally found that transition metals (having higher co-ordinated bonding ability than Ca2+) can also initiate folding and promote aggregation of CASQ2. These studies led us to suggest that folding and formation of higher-order structures depends on cationic properties such as co-ordinate bonding ability and ionic radius. Among the CPVT mutants studied, the L167H mutation disrupts the Ca2+-dependent folding and, when folding is achieved by Mn2+, L167H can undergo aggregation in a Ca2+-dependent manner. Interestingly, domain III mutants (D307H and P308L) lost their selectivity to Ca2+ and could be aggregated in the presence of Mg2+. In conclusion, these studies suggest that CPVT mutations modify CASQ2 behaviour, including folding, aggregation/polymerization and selectivity towards Ca2+.  相似文献   
69.
A number of immunological functions are ascribed to cell surface-expressed forms of the endoplasmic reticulum (ER) chaperone calreticulin (CRT). In this study, we examined the impact of ER stress-inducing drugs upon cell surface CRT induction and the resulting immunological consequences. We showed that cell surface expression of CRT and secretion of CRT, BiP, gp96, and PDI were induced by thapsigargin (THP) treatment, which depletes ER calcium, but not by tunicamycin treatment, which inhibits protein glycosylation. Surface expression of CRT in viable, THP-treated fibroblasts correlated with their enhanced phagocytic uptake by bone marrow-derived dendritic cells. Incubation of bone marrow-derived dendritic cells with THP-treated fibroblasts enhanced sterile IL-6 production and LPS-induced generation of IL-1β, IL-12, IL-23, and TNF-α. However, extracellular CRT is not required for enhanced proinflammatory responses. Furthermore, the pattern of proinflammatory cytokine induction by THP-treated cells and cell supernatants resembled that induced by THP itself and indicated that other ER chaperones present in supernatants of THP-treated cells also do not contribute to induction of the innate immune response. Thus, secretion of various ER chaperones, including CRT, is induced by ER calcium depletion. CRT, previously suggested as an eat-me signal in dead and dying cellular contexts, can also promote phagocytic uptake of cells subject to ER calcium depletion. Finally, there is a strong synergy between calcium depletion in the ER and sterile IL-6, as well as LPS-dependent IL-1β, IL-12, IL-23, and TNF-α innate responses, findings that have implications for understanding inflammatory diseases that originate in the ER.  相似文献   
70.
We define two classes of calreticulin mutants that retain glycan binding activity; those that display enhanced or reduced polypeptide-specific chaperone activity, due to conformational effects. Under normal conditions, neither set of mutants significantly impacts the ability of calreticulin to mediate assembly and trafficking of major histocompatibility complex class I molecules, which are calreticulin substrates. However, in cells treated with thapsigargin, which depletes endoplasmic reticulum calcium, major histocompatibility complex class I trafficking rates are accelerated coincident with calreticulin secretion, and detection of cell-surface calreticulin is dependent on its polypeptide binding conformations. Together, these findings identify a site on calreticulin that is an important determinant of the induction of its polypeptide binding conformation and demonstrate the relevance of the polypeptide binding conformations of calreticulin to endoplasmic reticulum stress-induced interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号