首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   2篇
  2014年   1篇
  2013年   7篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2009年   2篇
  2008年   5篇
  2007年   8篇
  2006年   8篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   10篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有68条查询结果,搜索用时 2 毫秒
61.
The development of an injectable probe formulation, consisting of perchlorotriphenylmethyl triester radical dissolved in hexafluorobenzene, for in vivo oximetry and imaging of oxygen concentration in tissues using electron paramagnetic resonance (EPR) imaging is reported. The probe was evaluated for its oxygen sensitivity, biostability, and distribution in a radiation-induced fibrosarcoma tumor transplanted into C3H mice. Some of the favorable features of the probe are: a single narrow EPR peak (anoxic linewidth, 41 microT), high solubility in hexafluorobenzene (>12 mM), large linewidth sensitivity to molecular oxygen ( approximately 1.8 microT/mmHg), good stability in tumor tissue (half-life: 3.3 h), absence of spin-spin broadening (up to 12 mM), and lack of power saturation effects (up to 200 mW). Three-dimensional spatial and spectral-spatial (spectroscopic) EPR imaging measurements were used to visualize the distribution of the probe, as well as to obtain spatially resolved pO(2) information in the mice tumor subjected to normoxic and hyperoxic treatments. The new probe should enable unique opportunities for measurement of the oxygen concentration in tumors using EPR methods.  相似文献   
62.
The use of doxorubicin (Dox) and its derivatives as chemotherapeutic drugs to treat patients with cancer causes dilated cardiomyopathy and congestive heart failure due to Dox-induced cardiotoxicity. In this work, using heat shock factor-1 wild-type (HSF-1(+/+)) and HSF-1 knockout (HSF-1(-/-)) mouse fibroblasts and embryonic rat heart-derived cardiac H9c2 cells, we show that the magnitude of protection from Dox-induced toxicity directly correlates with the level of the heat shock protein 27 (HSP27). Western blot analysis of normal and heat-shocked cells showed the maximum expression of HSP27 in heat-shocked cardiac H9c2 cells and no HSP27 in HSF-1(-/-) cells (normal or heat-shocked). Correspondingly, the cell viability, measured [with (3,4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay] after treatment with various concentrations of Dox, was the highest in heat-shocked H9c2 cells and the lowest in HSF-1(-/-) cells. Depleting HSP27 in cardiac H9c2 cells by small interfering (si)RNA also reduced the viability against Dox, confirming that HSP27 does protect cardiac cells against the Dox-induced toxicity. The cells that have lower HSP27 levels such as HSF-1(-/-), were found to be more susceptible for aconitase inactivation. Based on these results we propose a novel mechanism that HSP27 plays an important role in protecting aconitase from Dox-generated O(2)*(-), by increasing SOD activity. Such a protection of aconitase by HSP27 eliminates the catalytic recycling of aconitase released Fe(II) and its deleterious effects in cardiac cells.  相似文献   
63.
64.
Pulmonary hypertension (PH) is a disorder of lung vasculature characterized by arterial narrowing. Phosphatase-and-tensin homolog on chromosome 10 (PTEN), associated in the progression of multiple cancers, is implicated in arterial remodeling. However, the involvement of PTEN in PH remains unclear. The objective of the present study was to determine the role of PTEN in pulmonary vascular remodeling using established models of PH. The study used rat models of PH, induced by monocrotaline (MCT) administration (60 mg/kg) or continuous hypoxic exposure (10% oxygen) for 3 weeks. Pulmonary artery smooth muscle cells (SMCs) were used for in vitro confirmation. Development of PH was verified by hemodynamic, morphological and histopathology analyses. PTEN and key downstream proteins in pulmonary and cardiac tissues were analyzed by western blotting and RT-PCR. PTEN was significantly decreased (MCT, 53%; Hypoxia, 40%), pAkt was significantly increased (MCT, 42%; Hypoxia, 55%) in tissues of rats with PH. Similar results were observed in SMCs exposed to hypoxia (1% oxygen) for 48 h. Ubiquitination assay showed that PTEN degradation occurs via proteasomal degradation pathway. Western blotting demonstrated a significant downregulation of cell-cycle regulatory proteins p53 and p27, and upregulation of cyclin-D1 in the lungs of both models. The results showed that PTEN-mediated modulation of PI3K pathway was independent of the focal adhesion kinase and fatty acid synthase. The study, for the first time, established that PTEN plays a key role in the progression of pulmonary hypertension. The findings may have potential for the treatment of pulmonary hypertension using PTEN as a target.  相似文献   
65.
We noninvasively monitored the partial pressure of oxygen (pO2) in rat’s small intestine using a model of chronic mesenteric ischemia by electron paramagnetic resonance oximetry over a 7-day period. The particulate probe lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) was embedded into the oxygen permeable material polydimethyl siloxane by cast-molding and polymerization (Oxy-Chip). A one-time surgical procedure was performed to place the Oxy-Chip on the outer wall of the small intestine (SI). The superior mesenteric artery (SMA) was banded to ~30 % of blood flow for experimental rats. Noninvasive measurement of pO2 was performed at the baseline for control rats or immediate post-banding and on days 1, 3, and 7. The SI pO2 for control rats remained stable over the 7-day period. The pO2 on day-7 was 54.5 ± 0.9 mmHg (mean ± SE). SMA-banded rats were significantly different from controls with a noted reduction in pO2 post banding with a progressive decline to a final pO2 of 20.9 ± 4.5 mmHg (mean ± SE; p = 0.02). All SMA-banded rats developed adhesions around the Oxy-Chip, yet remained asymptomatic. The hypoxia marker Hypoxyprobe? was used to validate the low tissue pO2. Brown cytoplasmic staining was consistent with hypoxia. Mild brown staining was noted predominantly on the villus tips in control animals. SMA-banded rats had an extended region of hypoxic involvement in the villus with a higher intensity of cytoplasmic staining. Deep brown stainings of the enteric nervous system neurons and connective tissue both within layers and in the mesentery were noted. SMA-banded rats with lower pO2 values had a higher intensity of staining. Thus, monitoring SI pO2 using the probe Oxy-Chip provides a valid measure of tissue oxygenation. Tracking pO2 in conditions that produce chronic mesenteric ischemia will contribute to our understanding of intestinal tissue oxygenation and how changes impact symptom evolution and the trajectory of chronic disease.  相似文献   
66.
The purpose of this study was to determine the rate of oxygen consumption in mouse aortic endothelial cells (MAECs) and to determine the effect of a variety of inhibitors and stimulators of oxygen consumption measured by electron paramagnetic resonance (EPR) spectroscopy utilizing a new particulate oximetry probe. We have previously demonstrated that the octa-n-butoxy derivative of naphthalocyanine neutral radical (LiNc-BuO) enables accurate, precise, and reproducible measurements of pO(2) in cellular suspensions. In the current study, we carried out measurements to provide an accurate determination of pO(2) in small volume with less number of cells (20,000 cells) that has not been possible with other techniques. To establish the reliability of this method, agents such as menadione, lipopolysaccharide (LPS), potassium cyanide, rotenone, and diphenyleneiodonium chloride (DPI) were used to modulate the oxygen consumption rate in the cells. We observed an increase in oxygen consumption by the cells upon treatment with menadione and LPS, whereas treatment with cyanide, rotenone, and DPI inhibited oxygen consumption. This study clearly demonstrated the utilization of EPR spectrometry with LiNc-BuO probe for determination of oxygen concentration in cultured cells.  相似文献   
67.
The use of triarylmethyl (trityl) free radical, TAM OX063, for detection of superoxide in aqueous solutions by electron paramagnetic resonance (EPR) spectroscopy was investigated. TAM is paramagnetic (EPR active), highly soluble in water and exhibits a single sharp EPR peak in aqueous media. It is also highly stable in presence of many oxidoreductants such as ascorbate and glutathione that are present in the biological systems. TAM reacts with superoxide with an apparent second order rate constant of 3.1 × 103 M−1 s−1. The specific reactivity of TAM with superoxide, which leads to loss of EPR signal, was utilized to detect the generation of superoxide in various chemical (light/riboflavin/electron/donor), enzymatic (xanthine/xanthine oxidase), and cellular (stimulated neutrophils) model systems. The changes in the EPR line-width, induced by molecular oxygen, were utilized in the simultaneous determination of consumption of oxygen in the model systems. The effects of flux of superoxide and concentration of TAM on the efficiency of detection of superoxide were studied. The use of TAM for detection of superoxide offers unique advantages namely, (i) the utilization of very low concentration of the probe, (ii) its stability to bioreduction, and (iii) its use in the simultaneous determination of concentrations of superoxide and oxygen.  相似文献   
68.
Exposure of skin to UV light presents a potent oxidative stress and this could alter the skin redox state. In this context, we evaluated the ability of electron paramagnetic resonance (EPR) imaging to provide noninvasive in vivo mapping of the redox status of the skin of living rats. The redox status was measured using a topically applied nitroxyl spin probe, (15)N-PDT. The nitroxyl intensity profile obtained across the skin layers showed that the concentration of the probe was higher in the epidermis and lower in the dermis and hypodermis. Skin permeability and reduction metabolism were evaluated in the skin exposed to UVB (312 nm) radiation. Exposure of skin to UVB decreased the overall reduction rate constant of the nitroxyl probe to 25 +/- 6% of the value obtained in the untreated skin. EPR imaging data showed that after the UVB treatment, the reduction rate constant decreased to 41 +/- 1% in epidermis, 28 +/- 1% in dermis, and 21 +/- 8% in hypodermis layers. The data suggested that UVB decreased the overall reducing capability of the skin with a larger decrease in the dermis and hypodermis. In summary, in vivo EPR imaging measurements showed significant alterations in the redox state of the skin exposed to UV light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号