首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   65篇
  2023年   3篇
  2022年   14篇
  2021年   19篇
  2019年   6篇
  2018年   11篇
  2017年   9篇
  2016年   21篇
  2015年   24篇
  2014年   34篇
  2013年   23篇
  2012年   48篇
  2011年   41篇
  2010年   24篇
  2009年   26篇
  2008年   35篇
  2007年   27篇
  2006年   16篇
  2005年   17篇
  2004年   20篇
  2003年   15篇
  2002年   3篇
  2001年   13篇
  2000年   14篇
  1999年   18篇
  1998年   7篇
  1997年   6篇
  1995年   6篇
  1994年   3篇
  1993年   5篇
  1992年   9篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   6篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有577条查询结果,搜索用时 109 毫秒
71.
A strategy for quantification of multiple protein isoforms from a complex sample background is demonstrated, combining isotopomeric rhodamine 6G (R6G) labels and surface-enhanced Raman in polyacrylamide matrix. The procedure involves isotope-encoding by lysine-labeling with (R6G) active ester reagents, isoform separation by 2-DGE, fluorescence quantification using internal standardization to water, and silver nanoparticle deposition followed by surface-enhanced Raman detection. R6G sample encoding and standardization enabled the determination of total protein concentration and the distribution of specific isoforms using the combined detection approach of water-referenced fluorescence spectral imaging and ratiometric quantification. A detection limit of approximately 13.5 picomolar R6G-labeled protein was determined for the surface-enhanced Raman in a gel matrix (15-fold lower than fluorescence). High quantification accuracies for small differences in protein populations at low nanogram abundance were demonstrated for human GMP synthetase (hGMPS) either as purified protein samples in a single-point determination mode (3% relative standard deviation, RSD%) or as HCT116 human cancer cellular lysate in an imaging application (with 16% RSD%). These results represent a prototype for future applications of isotopic surface-enhanced resonance Raman scatter to quantification of protein distributions.  相似文献   
72.
DNA polymerases play a crucial role in the cell cycle due to their involvement in genome replication and repair. Understanding the reaction mechanism by which these polymerases carry out their function can provide insights into these processes. Recently, the crystal structures of human DNA polymerase lambda (Pollambda) have been reported both for pre- and post-catalytic complexes [García-Díaz et al., DNA Repair 3 (2007), 1333]. Here we employ the pre-catalytic complex as a starting structure for the determination of the catalytic mechanism of Pollambda using ab initio quantum mechanical/molecular mechanical methods. The reaction path has been calculated using Mg(2+) and Mn(2+) as the catalytic metals. In both cases the reaction proceeds through a two-step mechanism where the 3'-OH of the primer sugar ring is deprotonated by one of the conserved Asp residues (D490) in the active site before the incorporation of the nucleotide to the nascent DNA chain. A significant charge transfer is observed between both metals and some residues in the active site as the reaction proceeds. The optimized reactant and product structures agree with the reported crystal structures. In addition, the calculated reaction barriers for both metals are close to experimentally estimated barriers. Energy decomposition analysis to explain individual residue contributions suggests that several amino acids surrounding the active site are important for catalysis. Some of these residues, including R420, R488 and E529, have been implicated in catalysis by previous mutagenesis experiments on the homologous residues on Polbeta. Furthermore, Pollambda residues R420 and E529 found to be important from the energy decomposition analysis, are homologous to residues R183 and E295 in Polbeta, both of which are linked to cancer. In addition, residues R386, E391, K422 and K472 appear to have an important role in catalysis and could be a potential target for mutagenesis experiments. There is partial conservation of these residues across the Pol X family of DNA polymerases.  相似文献   
73.
The microtubule-associated protein tau can associate with various other proteins in addition to tubulin, including the SH3 domains of Src family tyrosine kinases. Tau is well known to aggregate to form hyperphosphorylated filamentous deposits in several neurodegenerative diseases (tauopathies) including Alzheimer disease. We now report that tau can bind to SH3 domains derived from the p85alpha subunit of phosphatidylinositol 3-kinase, phospholipase Cgamma1, and the N-terminal (but not the C-terminal) SH3 of Grb2 as well as to the kinases Fyn, cSrc, and Fgr. However, the short inserts found in neuron-specific isoforms of Src prevented the binding of tau. The experimentally determined binding of tau peptides is well accounted for when modeled into the peptide binding cleft in the SH3 domain of Fyn. After phosphorylation in vitro or in transfected cells, tau showed reduced binding to SH3 domains; no binding was detected with hyperphosphorylated tau isolated from Alzheimer brain, but SH3 binding was restored by phosphatase treatment. Tau mutants with serines and threonines replaced by glutamate, to mimic phosphorylation, showed reduced SH3 binding. These results strongly suggest that tau has a potential role in cell signaling in addition to its accepted role in cytoskeletal assembly, with regulation by phosphorylation that may be disrupted in the tauopathies including Alzheimer disease.  相似文献   
74.
BackgroundUnexpected weight loss (UWL) is a presenting feature of cancer in primary care. Existing research proposes simple combinations of clinical features (risk factors, symptoms, signs, and blood test data) that, when present, warrant cancer investigation. More complex combinations may modify cancer risk to sufficiently rule-out the need for investigation. We aimed to identify which clinical features can be used together to stratify patients with UWL based on their risk of cancer.Methods and findingsWe used data from 63,973 adults (age: mean 59 years, standard deviation 21 years; 42% male) to predict cancer in patients with UWL recorded in a large representative United Kingdom primary care electronic health record between January 1, 2000 and December 31, 2012. We derived 3 clinical prediction models using logistic regression and backwards stepwise covariate selection: Sm, symptoms-only model; STm, symptoms and tests model; Tm, tests-only model. Fifty imputations replaced missing data. Estimates of discrimination and calibration were derived using 10-fold internal cross-validation. Simple clinical risk scores are presented for models with the greatest clinical utility in decision curve analysis. The STm and Tm showed improved discrimination (area under the curve ≥ 0.91), calibration, and greater clinical utility than the Sm. The Tm was simplest including age-group, sex, albumin, alkaline phosphatase, liver enzymes, C-reactive protein, haemoglobin, platelets, and total white cell count. A Tm score of 5 balanced ruling-in (sensitivity 84.0%, positive likelihood ratio 5.36) and ruling-out (specificity 84.3%, negative likelihood ratio 0.19) further cancer investigation. A Tm score of 1 prioritised ruling-out (sensitivity 97.5%). At this threshold, 35 people presenting with UWL in primary care would be referred for investigation for each person with cancer referred, and 1,730 people would be spared referral for each person with cancer not referred. Study limitations include using a retrospective routinely collected dataset, a reliance on coding to identify UWL, and missing data for some predictors.ConclusionsOur findings suggest that combinations of simple blood test abnormalities could be used to identify patients with UWL who warrant referral for investigation, while people with combinations of normal results could be exempted from referral.

Dr. Brian D Nicholson and colleagues investigate whether combinations of routine blood tests could be used to stratify patients in UK with unexpected weight loss based on their risk of cancer.  相似文献   
75.
Divalent metal ions are necessary in the self splicing reaction of group I introns, and we report that metal interaction to the 2′ position of guanosine for the Azoarcus ribozyme is required for catalysis. Moreover, this metal coordination promotes the guanosine-substrate coupled binding to the ribozyme, which is another conserved feature seen across phylogenetic boundaries. Typically there is a 4-9-fold difference in binding of G to Efree versus E · S. In the Tetrahymena ribozyme’s case this substrate-guanosine communication was attributed to conformational change(s) that lead to cooperative binding of the two cofactors which is almost nonexistent at low temperatures (4 °C). In the prokaryotic Azoarcus ribozyme we also see a 4-5-fold difference in binding of the guanosine/substrate to Efree versus E · G or E · S at 10 °C that is attributed to guanosine-substrate coupling. This coupling is diminished when the metal (Mg2+) coordination to the 2′ is disrupted with use of 2′-amino-2′-deoxyguanosine. The coupling is restored when softer Mn2+ ions are added to the buffer. This evidence generalizes a model for group I ribozyme catalysis that involves metal coordination to the 2′ position of guanosine. However, we see one striking difference in that the guanosine-substrate coupling is reversed. In the Azoarcus system (10 °C) the guanosine/substrate binds 5-fold more tightly to Efree than to E · S or E · G, which is the opposite for Tetrahymena even when the later is run at 4 °C. One implication for this difference in coupling is that the Azoarcus is in a folded state well accommodated for guanosine or substrate binding. This initial binding actually causes a conformational change that retards the subsequent binding of the second cofactor, which contrasts what was found for the Tetrahymena ribozyme. These results indicate that while the role for the metal ions in the chemical catalysis is conserved across phylogenetic boundaries, there is variability in the folding pattern of the ribozyme that leads to phosphoryl transfer.  相似文献   
76.
77.
78.
79.
The role of glia in modulating neuronal network activity is an important question. Oligodendrocyte precursor cells (OPC) characteristically express the transmembrane proteoglycan nerve-glia antigen 2 (NG2) and are unique glial cells receiving synaptic input from neurons. The development of NG2+ OPC into myelinating oligodendrocytes has been well studied, yet the retention of a large population of synapse-bearing OPC in the adult brain poses the question as to additional functional roles of OPC in the neuronal network. Here we report that activity-dependent processing of NG2 by OPC-expressed secretases functionally regulates the neuronal network. NG2 cleavage by the α-secretase ADAM10 yields an ectodomain present in the extracellular matrix and a C-terminal fragment that is subsequently further processed by the γ-secretase to release an intracellular domain. ADAM10-dependent NG2 ectodomain cleavage and release (shedding) in acute brain slices or isolated OPC is increased by distinct activity-increasing stimuli. Lack of NG2 expression in OPC (NG2-knockout mice), or pharmacological inhibition of NG2 ectodomain shedding in wild-type OPC, results in a striking reduction of N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) in pyramidal neurons of the somatosensory cortex and alterations in the subunit composition of their α-amino-3-hydroxy-5-methyl-4-isoxazolepr opionicacid (AMPA) receptors. In NG2-knockout mice these neurons exhibit diminished AMPA and NMDA receptor-dependent current amplitudes; strikingly AMPA receptor currents can be rescued by application of conserved LNS protein domains of the NG2 ectodomain. Furthermore, NG2-knockout mice exhibit altered behavior in tests measuring sensorimotor function. These results demonstrate for the first time a bidirectional cross-talk between OPC and the surrounding neuronal network and demonstrate a novel physiological role for OPC in regulating information processing at neuronal synapses.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号