首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   64篇
  577篇
  2023年   3篇
  2022年   15篇
  2021年   19篇
  2019年   6篇
  2018年   11篇
  2017年   9篇
  2016年   21篇
  2015年   24篇
  2014年   34篇
  2013年   24篇
  2012年   48篇
  2011年   41篇
  2010年   24篇
  2009年   26篇
  2008年   35篇
  2007年   27篇
  2006年   16篇
  2005年   17篇
  2004年   20篇
  2003年   15篇
  2002年   3篇
  2001年   13篇
  2000年   14篇
  1999年   16篇
  1998年   7篇
  1997年   6篇
  1995年   6篇
  1994年   2篇
  1993年   5篇
  1992年   9篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   6篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有577条查询结果,搜索用时 15 毫秒
91.
92.
93.
We identify a role for the GDI-like solubilizing factor (GSF) PDEδ in modulating signalling through Ras family G proteins by sustaining their dynamic distribution in cellular membranes. We show that the GDI-like pocket of PDEδ binds and solubilizes farnesylated Ras proteins, thereby enhancing their diffusion in the cytoplasm. This mechanism allows more effective trapping of depalmitoylated Ras proteins at the Golgi and polycationic Ras proteins at the plasma membrane to counter the entropic tendency to distribute these proteins over all intracellular membranes. Thus, PDEδ activity augments K/Hras signalling by enriching Ras at the plasma membrane; conversely, PDEδ down-modulation randomizes Ras distributions to all membranes in the cell and suppresses regulated signalling through wild-type Ras and also constitutive oncogenic Ras signalling in cancer cells. Our findings link the activity of PDEδ in determining Ras protein topography to Ras-dependent signalling.  相似文献   
94.
Long-chain normal hydrocarbons (e.g. alkanes, alkenes and dienes) are rare biological molecules and their biosynthetic origins are obscure. Detailed analyses of the surface lipids that accumulate on maize silks have revealed that these hydrocarbons constitute a large portion (>90%) of the cuticular waxes that coat this organ, which contrasts with the situation on maize seedling leaves, where the cuticular waxes are primary alcohols and aldehydes. The normal hydrocarbons that occur on silks are part of a homologous series of alkanes, alkenes and dienes of odd-number carbon atoms, ranging between 19 and 33 in number. The alkenes and dienes consist of a homologous series, each of which has double bonds situated at defined positions of the alkyl chains: alkenes have double bonds situated at the sixth, ninth or 12th positions, and dienes have double bonds situated at the sixth and ninth, or ninth and twelfth positions. Finding a homologous series of unsaturated aldehydes and fatty acids suggests that these alkenes and dienes are biosynthesized by a series of parallel pathways of fatty-acid elongation and desaturation reactions, which are followed by sequential reduction and decarbonylation. In addition, the silk cuticular waxes contain metabolically related unsaturated long-chain methylketones, which probably arise via a decarboxylation mechanism. Finally, metabolite profiling analyses of the cuticular waxes of two maize inbred lines (B73 and Mo17), and their genetic hybrids, have provided insights into the genetic control network of these biosynthetic pathways, and that the genetic regulation of these pathways display best-parent heterotic effects.  相似文献   
95.
To date, variation in nectar chemistry of flowering plants has not been studied in detail. Such variation exerts considerable influence on pollinator–plant interactions, as well as on flower traits that play important roles in the selection of a plant for visitation by specific pollinators. Over the past 60 years the Aquilegia genus has been used as a key model for speciation studies. In this study, we defined the metabolomic profiles of flower samples of two Aquilegia species, A. Canadensis and A. pubescens. We identified a total of 75 metabolites that were classified into six main categories: organic acids, fatty acids, amino acids, esters, sugars, and unknowns. The mean abundances of 25 of these metabolites were significantly different between the two species, providing insights into interspecies variation in floral chemistry. Using the PlantSEED biochemistry database, we found that the majority of these metabolites are involved in biosynthetic pathways. Finally, we explored the annotated genome of A. coerulea, using the PlantSEED pipeline and reconstructed the metabolic network of Aquilegia. This network, which contains the metabolic pathways involved in generating the observed chemical variation, is now publicly available from the DOE Systems Biology Knowledge Base (KBase; http://kbase.us).  相似文献   
96.
The microtubule-associated protein tau can associate with various other proteins in addition to tubulin, including the SH3 domains of Src family tyrosine kinases. Tau is well known to aggregate to form hyperphosphorylated filamentous deposits in several neurodegenerative diseases (tauopathies) including Alzheimer disease. We now report that tau can bind to SH3 domains derived from the p85alpha subunit of phosphatidylinositol 3-kinase, phospholipase Cgamma1, and the N-terminal (but not the C-terminal) SH3 of Grb2 as well as to the kinases Fyn, cSrc, and Fgr. However, the short inserts found in neuron-specific isoforms of Src prevented the binding of tau. The experimentally determined binding of tau peptides is well accounted for when modeled into the peptide binding cleft in the SH3 domain of Fyn. After phosphorylation in vitro or in transfected cells, tau showed reduced binding to SH3 domains; no binding was detected with hyperphosphorylated tau isolated from Alzheimer brain, but SH3 binding was restored by phosphatase treatment. Tau mutants with serines and threonines replaced by glutamate, to mimic phosphorylation, showed reduced SH3 binding. These results strongly suggest that tau has a potential role in cell signaling in addition to its accepted role in cytoskeletal assembly, with regulation by phosphorylation that may be disrupted in the tauopathies including Alzheimer disease.  相似文献   
97.
The presence of tissue factor is essential for factor VIIa (FVIIa) to reach its full catalytic potential. The previous work in this laboratory demonstrated that substitution of the EGF1 domain of factor VIIa with that of factor IX (FVII((IXegf1))a) results in a substantial decrease in TF-binding affinity and catalytic activity. Supporting simulations of the solution structures of Ca(2+)-bound factor VIIa and FVII((IXegf1))a with tissue factor are provided. Mutants are generated, based on the simulation model, to study the effect of EGF1 substitution on catalytic activity. The simulations show larger Gla-EGF1 and EGF1-EGF2 inter-domain motions for FVII((IXegf1))a than for factor VIIa. The catalytic domain of the chimeric factor VIIa has been disturbed and several surface loops in the catalytic domain of FVII((IXegf1))a (Loop 170s (170-182), Loop 1 (185-188) and Loop 2 (221A-225)) manifest larger position fluctuations than wild-type. The position of Loop 140s (142-152) of FVII((IXegf1))a, near the N terminus insertion site of the catalytic domain, shifts relative to factor VIIa, resulting in a slight alteration of the active site. The results suggest that these four loops mediate the effect of the EGF1 domain substitution on the S1 site and catalytic residues. To test the model, we prepared mutations of these surface loops, including four FVII mutants, D186A, K188A, L144A and R147A, a FVII mutant with multiple mutations (MM3: L144A+R147A+D186A) and a FVII mutant with Loop 170s partially deleted, Loop 170s(del). The catalytic activities towards a small peptidyl substrate decreased 2.4, 4.5 and 9-fold for Loop 170s(del)a (a, activated), L144Aa and D186Aa, respectively, while MM3a lost almost all catalytic activity. The combined results of the simulations and mutants provide insight into the mechanism by which tissue factor enhances factor VIIa catalytic activity.  相似文献   
98.
Understanding the relationship between form and function is central to our comprehension of how phenotypic diversity evolves. Traits involved in multiple activities, such as social interactions and ecological resource use, are under the influence of different evolutionary forces potentially acting in opposite directions. Such systems provide the opportunity of understanding how potential constraints on morphological variation may influence whole-organism performance. In this study we examined morphology and bite performance in two closely related species of Podarcis wall lizards with divergent microhabitat preferences, to investigate how natural and sexual selection interact to shape the evolution of head traits. Our results show that although head morphology is markedly different between species and sexes, only sexes differ in bite force, indicating that the ecological differentiation between species is reflected in their morphology but does not constrain performance. Rather, the modification of the relative size of head components between species and a shift in the form-function relationship provide a potential explanation of how equal performance is attained by different morphological configurations. Geometric morphometrics provide a clear, biomechanically meaningful image of how this is achieved and show a bisexual pattern of head shape-bite force association in both species. This, together with a strong allometry of head size on body size and head shape on head size, provides indirect morphological evidence for the importance of sexual selection in shaping morphological and functional patterns. Finally, our findings suggest that the differences observed between species and sexes in head traits and bite performance are not reflected in their dietary ecology, implying that if trophic niche segregation between groups occurs, the reasons behind it are not primarily related to head morphology and functional variation.  相似文献   
99.
The Seychelles is a remarkably interesting archipelago for evolutionary studies, but only recently have molecular markers been used to explore its biogeographic patterns. Here we used morphological and molecular data to examine diversity and phylogenetic relationships of two endemic skink sister‐species from this archipelago: Trachylepis sechellensis and Trachylepis wrightii. Mitochondrial DNA genealogy rendered a monophyletic T. wrightii nested within a paraphyletic T. sechellensis, whereas nuclear DNA sequences from five unlinked markers reflected the accepted taxonomy. Hybridization and massive mtDNA introgression leading to the complete replacement of the native mtDNA lineage of T. sechellensis in some of the islands were invoked to explain this result, and morphological variation also seemed to reflect this pattern of reticulation. A Mio‐Pliocene divergence between both species is suggested. Multilocus molecular data were used to uncover biogeographic patterns within the archipelago, which reflected shared patterns with other co‐distributed lizard taxa; specifically a north–south marked structure, a close relationship between populations from Fregate and the southern islands, and a detectable isolation within the southern group, between Mahé, and Silhouette and North Islands. Gene flow from these latter islands towards the northern group was also suggested. These results add to the growing body of evidence of the influence of geographic distance and sea‐level oscillations in shaping the genetic structure of Seychellois taxa and of the existence of common biogeographic patterns across the archipelago.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号