首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4861篇
  免费   365篇
  2023年   40篇
  2022年   72篇
  2021年   165篇
  2020年   138篇
  2019年   145篇
  2018年   177篇
  2017年   170篇
  2016年   230篇
  2015年   279篇
  2014年   330篇
  2013年   370篇
  2012年   381篇
  2011年   312篇
  2010年   209篇
  2009年   204篇
  2008年   257篇
  2007年   216篇
  2006年   190篇
  2005年   172篇
  2004年   167篇
  2003年   112篇
  2002年   127篇
  2001年   89篇
  2000年   89篇
  1999年   69篇
  1998年   45篇
  1997年   26篇
  1996年   20篇
  1995年   37篇
  1994年   14篇
  1993年   13篇
  1992年   31篇
  1991年   20篇
  1990年   19篇
  1989年   15篇
  1988年   30篇
  1987年   26篇
  1986年   17篇
  1985年   20篇
  1984年   19篇
  1983年   15篇
  1982年   16篇
  1980年   7篇
  1976年   8篇
  1975年   8篇
  1974年   9篇
  1973年   8篇
  1972年   9篇
  1971年   10篇
  1968年   7篇
排序方式: 共有5226条查询结果,搜索用时 15 毫秒
971.
Climate change is driving species range shifts worldwide. However, physiological responses related to distributional changes are not fully understood. Oceanographers have reported an increase in ocean temperature in the northwest Iberian Peninsula that is potentially related to the decline in some cold-temperate intertidal macroalgae in the Cantabrian Sea, namely Fucus serratus. Low tide stress could also play a role in this decline. We performed one mensurative (in situ) and two manipulative (in culture) experiments designed to evaluate the interactive effects of some physical factors. The first experiment analysed field response to low tide stress in marginal (mid-Cantabrian Sea and northern Portugal) versus central (Galicia) populations of F. serratus. Then a second experiment was performed that utilized either harsh or mild summer conditions of atmospheric temperature, irradiance, humidity, and wind velocity to compare the responses of individuals from one marginal and one central population to low tide stress. Finally, the combined effect of sea temperature and the other factors was evaluated to detect interactive effects. Changes in frond growth, maximal photosynthetic quantum yield (F (v)/F (m)), temperature, and desiccation were found. Three additive factors (solar irradiation, ocean and air temperatures) were found to drive F. serratus distribution, except under mildly humid conditions that ameliorated atmospheric thermal stress (two additive factors). Mid-Cantabrian Sea temperatures have recently increased, reaching the inhibitory levels suggested in this study of F. serratus. We also expect an additive secondary contribution of low tide stress to this species decline. On the northern Portugal coast, ocean warming plus low tide stress has not reached this species' inhibition threshold. No significant differential responses attributed to the population of origin were found. Mechanistic approaches that are designed to analyse the interactive effects of physical stressors may improve the levels of confidence in predicted range shifts of species.  相似文献   
972.
The last 20 years have seen a dramatic increase in efforts to mitigate the negative effects of roads and traffic on wildlife, including fencing to prevent wildlife-vehicle collisions and wildlife crossing structures to facilitate landscape connectivity. While not necessarily explicitly articulated, the fundamental drivers behind road mitigation are human safety, animal welfare, and/or wildlife conservation. Concomitant with the increased effort to mitigate has been a focus on evaluating road mitigation. So far, research has mainly focussed on assessing the use of wildlife crossing structures, demonstrating that a broad range of species use them. However, this research has done little to address the question of the effectiveness of crossing structures, because use of a wildlife crossing structure does not necessarily equate to its effectiveness. The paucity of studies directly examining the effectiveness of crossing structures is exacerbated by the fact that such studies are often poorly designed, which limits the level of inference that can be made. Without well performed evaluations of the effectiveness of road mitigation measures, we may endanger the viability of wildlife populations and inefficiently use financial resources by installing structures that are not as effective as we think they are. In this paper we outline the essential elements of a good experimental design for such assessments and prioritize the parameters to be measured. The framework we propose will facilitate collaboration between road agencies and scientists to undertake research programs that fully evaluate effectiveness of road mitigation measures. We discuss the added value of road mitigation evaluations for policy makers and transportation agencies and provide recommendations on how to incorporate such evaluations in road planning practices.  相似文献   
973.
Drosophila melanogaster S2 cells were co-transfected with plasmid vectors containing the enhanced green fluorescent protein gene (EGFP), under the control of metallothionein promoter (pMt), and the hygromycin selection gene, in view of establishing parameters for optimized gene expression. A protocol of transfection was worked out, leading after hygromycin selection, to ∼90% of S2MtEGFP fluorescent cells at day 5 after copper sulfate (CuSO4) induction. As analyzed by confocal microscopy, S2MtEGFP cell cultures were shown to be quite heterogeneous regarding the intensity and cell localization of fluorescence among the EGFP expressing cells. Spectrofluorimetry kinetic studies of CuSO4 induced S2MtEGFP cells showed the EGFP expression at 510 nm as soon as 5 h after induction, the fluorescence increasing progressively from this time to attain values of 4.6 × 105 counts/s after 72 h of induction. Induction with 700 μM of CuSO4 performed at the exponential phase of the S2MtEGFP culture (106 cells/mL) led to a better performance in terms of cell growth, percent of fluorescent cells and culture intensity of fluorescence. Sodium butyrate (NaBu) treatment of CuSO4 induced S2MtEGFP cell cultures, although leading to a loss of cell culture viability, increased the percent of EGFP expressing cells and sharply enhanced the cell culture fluorescence intensity. The present study established parameters for improving heterologous protein expression in stably transfected Drosophila S2 cells, as assessed by the EGFP expression.  相似文献   
974.
Glioblastoma (GBM) is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs). This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.  相似文献   
975.
Chitin was functionalized with hexamethylenediamine followed by glutaraldehyde activation, and its capacity to bind Candida rugosa lipase was investigated. The loading of 250 units g(-1) support showed to be effective, resulting in a uniform enzyme fixation with high catalytic activity. Both free and immobilized lipases were characterized by determining the activity profile as a function of pH, temperature, and thermal stability. For the immobilized lipase, the influence of the reaction temperature and substrate polarity in nonconventional biocatalysis was also analyzed. Production of butyl esters was found to be dependent on the substrate partition coefficient, which accounts the greatest value for the system butanol and butyric acid. The highest enzyme activity was found for the system butanol and caprylic acid at a reaction temperature of 40 degrees C. Under such conditions, the operational stability tests indicated that a small enzyme deactivation occurs after 12 batches, revealing a biocatalyst half-life of 426.7 h.  相似文献   
976.
Oxidative stress in pregnancy and fertility pathologies   总被引:1,自引:0,他引:1  
Oxidative stress designates the state of imbalance between reactive oxygen species (ROS) production and antioxidant levels. In a healthy placenta, there is an increase in ROS production, due to formation of new tissues and inherent metabolism, but this is balanced by higher levels of antioxidants. However, this balance is lost in some situations, with a consequent increase in oxidative stress levels. Oxidative stress has been implicated in several placental disorders and pregnancy pathologies. The present review intends to summarize what is known about the relationship between oxidative stress and well-known pregnancy disorders.  相似文献   
977.
In order to study the effect of a diet on metabolites found in body fluids such as plasma, we have developed and validated a UPLC/MS method. While methods using NMR have been well established to analyse different biological tissues, recent studies have described robust untargeted UPLC-MS methods for plasma analysis. One major concern when profiling plasma is the presence of an important quantity of proteins which have to be precipitated without any loss of metabolites prior to LC/MS analysis. The utilization of untargeted approaches in nutritional metabolomics still suffers from the lack of identification of specific biomarkers. We therefore suggest an alternative method still using a global approach but focusing at the same time on metabolites previously described in human plasma in order to detect biomarkers of metabolic dysregulations. Thus, to fulfil our objectives, analytical parameters were tested (i) the anticoagulant type for sample collection, (ii) the protein precipitation method and (iii) UPLC/MS analytical conditions. Three protein precipitation methods and two anticoagulants were tested and compared. The method utilizing blood collection on heparin and methanol precipitation was chosen for giving the most reproducible results while keeping the complexity of the sample. Finally, a validation was proposed to evaluate the stability of this analytical method applied to a large batch of samples for nutritional metabolomic studies.  相似文献   
978.
Penicillium echinulatum has been identified as a potential cellulase producer for bioconversion processes but its cellulase system has never been investigated in detail. In this work, the volumetric activities of P. echinulatum cellulases were determined against filter paper (0.27 U/mL), carboxymethylcellulose (1.53 U/mL), hydroxyethylcellulose (4.68 U/mL), birchwood xylan (3.16 U/mL), oat spelt xylan (3.29 U/mL), Sigmacell type 50 (0.10 U/mL), cellobiose (0.19 U/mL), and p-nitrophenyl-glucopiranoside (0.31 U/mL). These values were then expressed in relation to the amount of protein and compared those of Trichoderma reesei cellulases (Celluclast 1.5L FG, Novozymes). Both enzyme complexes were shown to have similar total cellulase and xylanase activities. Analysis of substrate hydrolysates demonstrated that P. echinulatum enzymes have higher beta-glucosidase activity than Celluclast 1.5L FG, while the latter appears to have greater cellobiohydrolase activity. Unlike Celluclast 1.5L FG, P. echinulatum cellulases had enough beta-glucosidase activity to remove most of the cellobiose produced in hydrolysis experiments. However, Celluclast 1.5L FG became more powerful than P. echinulatum cellulases when supplemented with exogenous beta-glucosidase activity (Novozym 188). Both cellulase complexes displayed the same influence over the degree of polymerization of cellulose, revealing that hydrolyzes were carried out under the typical endo-exo synergism of fungal enzymes.  相似文献   
979.
Acute myeloid leukaemia (AML) comprises a heterogeneous group of hematologic neoplasms characterized by diverse combinations of genetic, phenotypic and clinical features representing a major challenge for the development of targeted therapies. Metabolic reprogramming, mainly driven by deregulation of the nutrient‐sensing pathways as AMPK, mTOR and PI3K/AKT, has been associated with cancer cells, including AML cells, survival and proliferation. Nevertheless, the role of these metabolic adaptations on the AML pathogenesis is still controversial. In this work, the metabolic status and the respective metabolic networks operating in different AML cells (NB‐4, HL‐60 and KG‐1) and their impact on autophagy and survival was characterized. Data show that whereas KG‐1 cells exhibited preferential mitochondrial oxidative phosphorylation metabolism with constitutive co‐activation of AMPK and mTORC1 associated with increased autophagy, NB‐4 and HL‐60 cells displayed a dependent glycolytic profile mainly associated with AKT/mTORC1 activation and low autophagy flux. Inhibition of AKT is disclosed as a promising therapeutical target in some scenarios while inhibition of AMPK and mTORC1 has no major impact on KG‐1 cells’ survival. The results highlight an exclusive metabolic profile for each tested AML cells and its impact on determination of the anti‐leukaemia efficacy and on personalized combinatory therapy with conventional and targeted agents.  相似文献   
980.

Engineered polyketide synthases (PKSs) are promising synthetic biology platforms for the production of chemicals with diverse applications. The dehydratase (DH) domain within modular type I PKSs generates an α,β-unsaturated bond in nascent polyketide intermediates through a dehydration reaction. Several crystal structures of DH domains have been solved, providing important structural insights into substrate selection and dehydration. Here, we present two DH domain structures from two chemically diverse PKSs. The first DH domain, isolated from the third module in the borrelidin PKS, is specific towards a trans-cyclopentane-carboxylate-containing polyketide substrate. The second DH domain, isolated from the first module in the fluvirucin B1 PKS, accepts an amide-containing polyketide intermediate. Sequence-structure analysis of these domains, in addition to previously published DH structures, display many significant similarities and key differences pertaining to substrate selection. The two major differences between BorA DH M3, FluA DH M1 and other DH domains are found in regions of unmodeled residues or residues containing high B-factors. These two regions are located between α3–β11 and β7–α2. From the catalytic Asp located in α3 to a conserved Pro in β11, the residues between them form part of the bottom of the substrate-binding cavity responsible for binding to acyl-ACP intermediates.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号