首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   721篇
  免费   44篇
  765篇
  2023年   5篇
  2022年   7篇
  2021年   14篇
  2020年   6篇
  2019年   6篇
  2018年   16篇
  2017年   9篇
  2016年   31篇
  2015年   33篇
  2014年   22篇
  2013年   46篇
  2012年   56篇
  2011年   51篇
  2010年   38篇
  2009年   22篇
  2008年   42篇
  2007年   29篇
  2006年   36篇
  2005年   23篇
  2004年   25篇
  2003年   37篇
  2002年   23篇
  2001年   10篇
  2000年   14篇
  1999年   11篇
  1998年   11篇
  1997年   8篇
  1996年   11篇
  1995年   5篇
  1994年   7篇
  1993年   6篇
  1992年   10篇
  1991年   9篇
  1990年   9篇
  1989年   4篇
  1988年   9篇
  1987年   2篇
  1986年   8篇
  1985年   13篇
  1984年   3篇
  1983年   8篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
  1976年   4篇
  1975年   3篇
  1972年   3篇
  1968年   2篇
  1964年   2篇
排序方式: 共有765条查询结果,搜索用时 13 毫秒
681.
Little is known regarding the ligand specificity of Ly-49 activating receptor subfamily members expressed by NK cells. A new Ly-49 activating receptor related to Ly-49A in its extracellular domain, designated Ly-49P, was recently cloned from 129 strain mice. We independently cloned an apparent allele of Ly-49P expressed by nonobese diabetic and nonobese diabetes-resistant mouse strain NK cells. We found it to be reactive with the A1 Ab thought to recognize a polymorphic epitope expressed only by the Ly-49A inhibitory receptor of the C57BL/6 strain. Rat RNK-16 cells transfected with Ly-49P mediated reverse Ab-dependent cellular cytotoxicity of FcR-positive target cells, indicating that Ly-49P can activate NK-mediated lysis. We determined that RNK-16 lysis of Con A blasts induced by Ly-49P was MHC dependent, resulting in efficient lysis of H-2Dd-bearing targets. We found that the Dd alpha1/alpha2 domain is required for Ly-49P-mediated RNK-16 activation, as determined by exon shuffling and transfection. Thus, Ly-49P is the second activating Ly-49 receptor demonstrated to induce NK cytotoxicity by recognizing a class I MHC molecule.  相似文献   
682.

Aims

Afforestation causes important alterations in SOM content and composition that affect the soil functions and C balance. The aim of this study was to identify the mechanisms that determine the changes in SOM composition following afforestation of grasslands.

Methods

The study included 4 chronosequences and 5 paired plots comprising pastures and land afforested with Pinus radiata. The SOM was characterized by 13C CP-MAS NMR spectroscopy and differential scanning calorimetry.

Results

During the first 10–20 year after afforestation, the changes in SOM content varied from slight gains to large losses (>40 %). The analyses revealed that even SOM compounds considered resistant to decomposition were degraded during this time. The SOM gains, observed 20 year after stand establishment, were favoured by the higher recalcitrance of pine litter and possibly by soil acidification. The concentrations of most SOM compounds, particularly the stable compounds, were higher at the end of the rotation. The low degree of protection, along with the favourable climatic conditions, may also explain the rapid decomposition of SOM, including resistant compounds, in these soils. DSC analysis complemented the information about SOM composition provided by other techniques.

Conclusions

The accumulation of stable SOM compounds at the end of the rotation suggests a longer soil C turnover in these afforested soils, which may alleviate the gradual loss of SOC in intensively managed forest soils.  相似文献   
683.
Progression of spontaneous autoimmune diabetes is associated with development of a disease-countering negative-feedback regulatory loop that involves differentiation of low-avidity autoreactive CD8(+) cells into memory-like autoregulatory T cells. Such T cells blunt diabetes progression by suppressing the presentation of both cognate and noncognate Ags to pathogenic high-avidity autoreactive CD8(+) T cells in the pancreas-draining lymph nodes. In this study, we show that development of autoregulatory CD8(+) T cell memory is CD4(+) T cell dependent. Transgenic (TG) NOD mice expressing a low-affinity autoreactive TCR were completely resistant to autoimmune diabetes, even after systemic treatment of the mice with agonistic anti-CD40 or anti-4-1BB mAbs or autoantigen-pulsed dendritic cells, strategies that dramatically accelerate diabetes development in TG NOD mice expressing a higher affinity TCR for the same autoantigenic specificity. Furthermore, whereas abrogation of RAG-2 expression, hence endogenous CD4(+) T cell and B cell development, decelerated disease progression in high-affinity TCR-TG NOD mice, it converted the low-affinity TCR into a pathogenic one. In agreement with these data, polyclonal CD4(+) T cells from prediabetic NOD mice promoted disease in high-affinity TCR-TG NOD.Rag2(-/-) mice, but inhibited it in low-affinity TCR-TG NOD.Rag2(-/-) mice. Thus, in chronic autoimmune responses, CD4(+) Th cells contribute to both promoting and suppressing pathogenic autoimmunity.  相似文献   
684.
The engrailed (en) mutation leads to the transformation of the posterior structures of the dorsal mesothoracic disc into those characteristic of the anterior region of the same disc. Similar posterior-anterior duplications have been detected in dorsal as well as ventral structures of all the thoracic segments. —Genetic combinations of en with other pattern mutants have shown their synergistic effect on the posterior wing pattern.—A clonal analysis of the en wing disc shows that en affects its development in a characteristic way. The genetic change, by induced mitotic recombination, of en+ into en cells is followed by the corresponding transformation, except when it takes place some cell divisions prior to differentiation.—The en posterior wing disc cells show positive affinities with normal anterior wing disc cells in aggregates.—The mode of action of the en+ locus controlling wing disc development is discussed.  相似文献   
685.
Polo-like kinase 1 (Plk1) is a core regulator of cell division and an emerging target for cancer therapy. Pharmacologic inhibitors of Plk1 exist but affect other kinases, complicating their in vivo validation. To address this, we examined effects of two structurally unrelated Plk1 inhibitors (BI-2536 and TAL) against isogenic human cell lines that solely express wildtype (wt) or analogue-sensitive (as) Plk1 alleles. Unexpectedly, Plk1(as) cells displayed profound biochemical and functional resistance to both inhibitors. Cells that co-express Plk1(wt) and Plk1(as) exhibit loss-of-function phenotypes only when both kinase alleles are inhibited. Resistance to BI-2536 is linked to an intragenic suppressor mutation (C67V) that restores an otherwise invariant valine to the kinase active site. Structural modeling demonstrates that this mutation not only enables Plk1(as) to function in vivo but also occludes BI-2536 from the ATP-binding pocket. Our results reveal the molecular basis of Plk inhibitor selectivity and a potential mechanism for tumor cell resistance.  相似文献   
686.
We report the functional characterization of RPN6, an essential gene from Saccharomyces cerevisiae encoding the proteasomal subunit Rpn6p. For this purpose, conditional mutants that are able to grow on galactose but not on glucose were obtained. When these mutants are shifted to glucose, Rpn6p depletion induces several specific phenotypes. First, multiubiquitinated proteins accumulate, indicating a defect in proteasome-mediated proteolysis. Second, mutant yeasts are arrested as large budded cells with a single nucleus and a 2C DNA content; in addition, the spindle pole body is duplicated, indicating a general cell cycle defect related to the turnover of G(2)-cyclins after DNA synthesis. Clb2p and Pds1p, but not Sic1p, accumulate in the arrested cells. Depletion of Rpn6p affects both the structure and the peptidase activity of proteasomes in the cell. These results implicate Rpn6p function in the specific recognition of a subset of substrates and point to a role in maintaining the correct quaternary structure of the 26 S proteasome.  相似文献   
687.
Grapevine downy mildew caused by the Oomycete Plasmopara viticola is one of the most important diseases affecting Vitis spp. The current strategy of control relies on chemical fungicides. An alternative to the use of fungicides is using downy mildew resistant varieties, which is cost-effective and environmentally friendly. Knowledge about the genetic basis of the resistance to P. viticola has progressed in the recent years, but little data are available about P. viticola genetics, in particular concerning the nature of its avirulence genes. Identifying pathogen effectors as putative avirulence genes is a necessary step in order to understand the biology of the interaction. It is also important in order to select the most efficient combination of resistance genes in a strategy of pyramiding. On the basis of knowledge from other Oomycetes, P. viticola effectors can be identified by using a candidate gene strategy based on data mining of genomic resources. In this paper we describe the development of Expressed Sequence Tags (ESTs) from P. viticola by creating a cDNA library from in vitro germinated zoospores and the sequencing of 1543 clones. We present 563 putative nuclear P. viticola unigenes. Sequence analysis reveals 54 ESTs from putative secreted hydrolytic enzymes and effectors, showing the suitability of this material for the analysis of the P. viticola secretome and identification of effector genes. Next generation sequencing of cDNA from in vitro germinated zoospores should result in the identification of numerous candidate avirulence genes in the grapevine/downy mildew interaction.  相似文献   
688.
A doubled haploid line (DHL) population of melon derived from a cross between the Korean cultivar “Songwhan Charmi” accession PI161375 (SC), included in the horticultural group conomon, and the Spanish cultivar “Piel de Sapo” (PS), included in the horticultural group inodorus, was used to develop a collection of near isogenic lines (NILs). These parental lines represent very different melon cultivar groups, with important differences at fruit, plant, disease response and molecular level. This cross is one of the most polymorphic ones within melon germplasm. Selected DHLs were backcrossed to PS and further backcrossing and selfing was performed, monitoring introgressions from SC using molecular markers covering the melon genetic map. A final collection of 57 NILs was obtained, containing a unique independent introgression from SC in the PS genetic background. The introgressions within the collection cover at least 85% of the SC genome with an average introgression size of 41 cM, corresponding to 3.4% of the SC genome. The average resolution for mapping genes or quantitative trait loci is 18.90 cM. This set of NILs is a potentially powerful tool for the study of quantitative trait locus involved in melon fruit quality and other important complex traits, and the introduction of new genetic variability in modern cultivars from exotic sources. The NILs can also be used as pre-competitive breeding lines in melon breeding projects.  相似文献   
689.

Purpose

To assess in a cohort of Caucasian patients exposed to stavudine (d4T) the association of polymorphisms in pyrimidine pathway enzymes and HLA-B*40∶01 carriage with HIV/Highly active antiretroviral therapy (HAART)-associated lipodystrophy syndrome (HALS).

Methods

Three-hundred and thirty-six patients, 187 with HALS and 149 without HALS, and 72 uninfected subjects were recruited. The diagnosis of HALS was performed following the criteria of the Lipodystrophy Severity Grading Scale. Polymorphisms in the thymidylate synthase (TS) and methylene-tetrahydrofolate reductase (MTHFR) genes were determined by direct sequencing, HLA-B genotyping by PCR-SSOr Luminex Technology, and intracellular levels of stavudine triphosphate (d4T-TP) by a LC-MS/MS assay method.

Results

HALS was associated with the presence of a low expression TS genotype polymorphism (64.7% vs. 42.9%, OR = 2.43; 95%CI: 1.53–3.88, P<0.0001). MTHFR gene polymorphisms and HLA-B*40∶01 carriage were not associated with HALS or d4T-TP intracellular levels. Low and high expression TS polymorphisms had different d4T-TP intracellular levels (25.60 vs. 13.60 fmol/106 cells, P<0.0001). Independent factors associated with HALS were(OR [95%CI]: (a) Combined TS and MTHFR genotypes (p = 0.006, reference category (ref.): ‘A+A’; OR for ‘A+B’ vs. ref.: 1.39 [0.69–2.80]; OR for ‘B+A’ vs. ref.: 2.16 [1.22–3.83]; OR for ‘B+B’ vs. ref.: 3.13, 95%CI: 1.54–6.35), (b) maximum viral load ≥5 log10 (OR: 2.55, 95%CI: 1.56–4.14, P = 0.001), (c) use of EFV (1.10 [1.00–1.21], P = 0.008, per year of use).

Conclusion

HALS is associated with combined low-expression TS and MTHFR associated with high activity polymorphisms but not with HLA-B*40∶01 carriage in Caucasian patients with long-term exposure to stavudine.  相似文献   
690.
Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous inherited degenerative retinopathies caused by abnormalities of photoreceptors or retinal pigment epithelium in the retina leading to progressive sight loss. Rhodopsin is the prototypical G-protein-coupled receptor located in the vertebrate retina and is responsible for dim light vision. Here, novel M39R and N55K variants were identified as causing an intriguing sector phenotype of RP in affected patients, with selective degeneration in the inferior retina. To gain insights into the molecular aspects associated with this sector RP phenotype, whose molecular mechanism remains elusive, the mutations were constructed by site-directed mutagenesis, expressed in heterologous systems, and studied by biochemical, spectroscopic, and functional assays. M39R and N55K opsins had variable degrees of chromophore regeneration when compared with WT opsin but showed no gross structural misfolding or altered trafficking. M39R showed a faster rate for transducin activation than WT rhodopsin with a faster metarhodopsinII decay, whereas N55K presented a reduced activation rate and an altered photobleaching pattern. N55K also showed an altered retinal release from the opsin binding pocket upon light exposure, affecting its optimal functional response. Our data suggest that these sector RP mutations cause different protein phenotypes that may be related to their different clinical progression. Overall, these findings illuminate the molecular mechanisms of sector RP associated with rhodopsin mutations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号