首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   11篇
  2022年   2篇
  2021年   2篇
  2018年   2篇
  2016年   6篇
  2015年   14篇
  2014年   6篇
  2013年   11篇
  2012年   15篇
  2011年   13篇
  2010年   2篇
  2009年   7篇
  2008年   13篇
  2007年   18篇
  2006年   5篇
  2005年   16篇
  2004年   12篇
  2003年   20篇
  2002年   17篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1987年   4篇
  1986年   2篇
  1985年   7篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1976年   2篇
  1974年   5篇
  1973年   3篇
  1968年   4篇
  1967年   1篇
  1964年   2篇
  1963年   3篇
  1961年   2篇
  1960年   1篇
  1959年   1篇
  1958年   1篇
排序方式: 共有292条查询结果,搜索用时 171 毫秒
91.
Rabbit liver purine nucleoside phosphorylase (purine nucleoside: orthophosphate ribosyltransferase EC 2.4.2.1.) was purified to homogeneity by column chromatography and ammonium sulfate fractionation. Homogeneity was established by disc gel electrophoresis in presence and absence of sodium dodecyl sulfate, and isoelectric focusing. Molecular weights of 46,000 and 39,000 were determined, respectively, by gel filtration and by sodium dodecyl sulfate-polyacrylamide disc gel electrophoresis. Product inhibition was observed with guanine and hypoxanthine as strong competitive inhibitors for the enzymatic phosphorolysis of guanosine. Respective Kis calculated were 1.25 x 10(-5) M for guanine and 2.5 x 10(-5) M for hypoxanthine. Ribose 1-phosphate, another product of the reaction, gave noncompetitive inhibition with guanosine as variable substrate, and an inhibition constant of 3.61 x 10(-4) M was calculated. The protection of essential --SH groups on the enzyme, by 2-mercaptoethanol or dithiothreitol, was necessary for the maintenance of enzyme activity. Noncompetitive inhibition was observed for p-chloromercuribenzoate with an inhibition constant of 5.68 x 10(-6)M. Complete reversal of this inhibition by an excess of 2-mercaptoethanol or dithiothreitol was demonstrated. In the presence of methylene blue, the enzyme showed a high sensitivity to photooxidation and a dependence of photoinactivation on pH, strongly implicating histidine as the susceptible group at the active site of the enzyme. The pKa values determined for ionizable groups of the active site of the enzyme were near pH 5.5 and pH 8.5 The chemical and kinetic evidences suggest that histidine and cysteine may be essential for catalysis. Inorganic orthophosphate (Km 1.54 x 10(-2) M) was an obligatory anion requirement, and arsenate substituted for phosphate with comparable results. Guanosine (Km 5.00 x 10(-5) M), deoxyguanosine (Km 1.00 x 10(-4)M) and inosine (Km 1.33 x 10(-4)M), were substrates for enzymatic phosphorolysis. Xanthosine was an extremely poor substrate, and adenosine was not phosphorylyzed at 20-fold excess of the homogeneous enzyme. Guanine (Km 1.82 x 10(-5)M),ribose 1-phosphate (Km 1.34 x 10(-4) M) and hypoxanthine were substrates for the reverse reaction, namely, the enzymatic synthesis of nucleosides. The initial velocity studies of the saturation of the enzyme with guanosine, at various fixed concentrations of inorganic orthophosphate, suggest a sequential bireactant catalytic mechanism for the enzyme.  相似文献   
92.
93.
Lundberg P  Lundquist PO 《Planta》2004,219(4):661-672
The primary nitrogen metabolism of the N2-fixing root nodule symbiosis Alnus incana (L.)–Frankia was investigated by 31P and 15N nuclear magnetic resonance (NMR) spectroscopy. Perfusion of root nodules in a pulse–chase approach with 15N- or 14N-labeled NH4+ revealed the presence of the amino acids alanine (Ala), -amino butyric acid, glutamine (Gln), glutamic acid (Glu), citrulline (Cit) and arginine (Arg). Labeling kinetics of the Gln amide-N and -amino acids suggested that the glutamine synthetase (GS; EC 6.3.1.2)–glutamate synthase (GOGAT; EC 1.4.1.13) pathway was active. Inhibition of the GS-catalyzed reaction by methionine sulphoximine abolished incorporation of 15N. Cit was labeled in all three N positions but most rapidly in the position, consistent with carbamoyl phosphate as the precursor to which Gln could be the amino donor catalyzed by carbamoyl phosphate synthase (CPS; EC 6.3.5.5). Ala biosynthesis occurred consistent with a flux of N in the sequence Gln–Glu–Ala. 31P NMR spectroscopy in vivo and of extracts revealed several metabolites and was used in connection with the 15N pulse–chase experiment to assess general metabolic status. Stable concentrations of ATP and UDP-glucose during extended perfusions showed that the overall root nodule metabolism appeared undisturbed throughout the experiments. The metabolic pathways suggested by the NMR results were confirmed by high activities of the enzymes GS, NADH-GOGAT and ornithine carbamoyltransferase (OCT; EC 2.1.3.3). We conclude that the primary pathway of NH4+ assimilation in A. incana root nodules occurs through the GS–GOGAT pathway. Biosynthesis of Cit through GS–CPS–OCT is important and is a link between the first amino acid Gln and this final transport and storage form of nitrogen.Abbreviations AlaDH l-Alanine dehydrogenase - Cit Citrulline - CPS Carbamoyl phosphate synthase - GABA -Amino butyric acid - GOGAT Glutamate synthase - GS Glutamine synthetase - MDH Malate dehydrogenase - MSO Methionine sulphoximine - NMR Nuclear magnetic resonance - OCT Ornithine carbamoyltransferase - PEPC Phosphoenolpyruvate decarboxylase - UDPGlc Uridine 5-diphosphoglucose  相似文献   
94.
Glantz SA 《BMJ (Clinical research ed.)》2000,321(7270):1222; author reply 1222-1222; author reply 1223
  相似文献   
95.
We examined the influence of sepsis on the expression and activity of the calpain and caspase systems in skeletal muscle. Sepsis was induced in rats by cecal ligation and puncture (CLP). Control rats were sham operated. Calpain activity was determined by measuring the calcium-dependent hydrolysis of casein and by casein zymography. The activity of the endogenous calpain inhibitor calpastatin was measured by determining the inhibitory effect on calpain activity in muscle extracts. Protein levels of mu- and m-calpain and calpastatin were determined by Western blotting, and calpastatin mRNA was measured by real-time PCR. Caspase-3 activity was determined by measuring the hydrolysis of the fluorogenic caspase-3 substrate Ac-DEVD-AMC and by determining protein and mRNA expression for caspase-3 by Western blotting and real-time PCR, respectively. In addition, the role of calpains and caspase-3 in sepsis-induced muscle protein breakdown was determined by measuring protein breakdown rates in the presence of specific inhibitors. Sepsis resulted in increased muscle calpain activity caused by reduced calpastatin activity. In contrast, caspase-3 activity, mRNA levels, and activated caspase-3 29-kDa fragment were not altered in muscle from septic rats. Sepsis-induced muscle proteolysis was blocked by the calpain inhibitor calpeptin but was not influenced by the caspase-3 inhibitor Ac-DEVD-CHO. The results suggest that sepsis-induced muscle wasting is associated with increased calpain activity, secondary to reduced calpastatin activity, and that caspase-3 activity is not involved in the catabolic response to sepsis.  相似文献   
96.
The beta-cell is equipped with at least six voltage-gated Ca2+ (CaV) channel alpha1-subunits designated CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1. These principal subunits, together with certain auxiliary subunits, assemble into different types of CaV channels conducting L-, P/Q-, N-, R-, and T-type Ca2+ currents, respectively. The beta-cell shares customary mechanisms of CaV channel regulation with other excitable cells, such as protein phosphorylation, Ca2+-dependent inactivation, and G protein modulation. However, the beta-cell displays some characteristic features to bring these mechanisms into play. In islet beta-cells, CaV channels can be highly phosphorylated under basal conditions and thus marginally respond to further phosphorylation. In beta-cell lines, CaV channels can be surrounded by tonically activated protein phosphatases dominating over protein kinases; thus their activity is dramatically enhanced by inhibition of protein phosphatases. During the last 10 years, we have revealed some novel mechanisms of beta-cell CaV channel regulation under physiological and pathophysiological conditions, including the involvement of exocytotic proteins, inositol hexakisphosphate, and type 1 diabetic serum. This minireview highlights characteristic features of customary mechanisms of CaV channel regulation in beta-cells and also reviews our studies on newly identified mechanisms of beta-cell CaV channel regulation.  相似文献   
97.
Recent studies suggest that sodium arsenite downregulates NF-kappaB activity by inhibiting phosphorylation and subsequent degradation of IkappaBalpha. Many effects of sodium arsenite are secondary to induction of heat shock proteins. The role of the heat shock response in arsenite-induced inhibition of NF-kappaB, however, is not known. We examined the involvement of the heat shock response in arsenite-induced inhibition of NF-kappaB activity in IL-1beta-stimulated Caco-2 cells, a human colorectal adenocarcinoma cell line with enterocytic properties. Treatment of the cells with IL-1beta resulted in increased IkappaB kinase activity, reduced levels of IkappaBalpha and increased NF-kappaB DNA binding activity. Sodium arsenite blocked all of these responses to IL-1beta without inducing changes in heat shock factor activity or heat shock protein levels. Results from additional experiments showed that the protective effect of sodium arsenite on IkappaBalpha was not influenced by the oxygen radical scavenger catalase or by inhibitors of the MAP-kinase signaling pathway. The present results suggest that sodium arsenite stabilizes IkappaBalpha and prevents NF-kappaB activation in IL-1beta-stimulated Caco-2 cells independent of the heat shock response. In addition, stabilization of IkappaBalpha by sodium arsenite does not require oxygen radical formation or activation of the MAP kinase signaling pathway.  相似文献   
98.
99.
Compensatory optomotor reflexes were examined in crayfish (Procambarus clarkii) with oscillating sine wave gratings and step displacements of a single stripe. A capacitance transducer was used to measure the rotation of the eyestalk about its longitudinal axis. System studies reveal a spatial frequency response independent of velocity and stimulus amplitude and linear contrast sensitivity similar to that of neurons in the visual pathway. The reflex operates at low temporal frequencies (<0.002 Hz to 0.5 Hz) and exhibits a low-pass temporal frequency response with cut-off frequency of 0.1 Hz. Eyestalk rotation increases as a saturable function of the angular stimulus displacement. When compared to the oscillatory response, transient responses are faster, and they exhibit a lower gain for large stimulus displacements. These differences may reflect system nonlinearity and/or the presence of at least two classes of afferents in the visual pathway. Our metric for information transmission is the Kullback-Leibler (K-L) distance, which is inversely proportional to the probability of an error in distinguishing two stimuli. K-L distances are related to differences in responsiveness for variations in spatial frequency, contrast, and angular displacement. The results are interpreted in terms of the neural filters that shape the system response and the constraints that the K-L distances place on information transmission in the afferent visual pathway.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号