首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3587篇
  免费   253篇
  国内免费   4篇
  2023年   9篇
  2022年   17篇
  2021年   52篇
  2020年   30篇
  2019年   44篇
  2018年   48篇
  2017年   55篇
  2016年   93篇
  2015年   141篇
  2014年   152篇
  2013年   219篇
  2012年   271篇
  2011年   207篇
  2010年   176篇
  2009年   127篇
  2008年   226篇
  2007年   231篇
  2006年   174篇
  2005年   195篇
  2004年   187篇
  2003年   181篇
  2002年   169篇
  2001年   46篇
  2000年   42篇
  1999年   40篇
  1998年   50篇
  1997年   31篇
  1996年   31篇
  1995年   39篇
  1994年   45篇
  1993年   37篇
  1992年   29篇
  1991年   26篇
  1990年   22篇
  1989年   20篇
  1988年   23篇
  1987年   32篇
  1986年   20篇
  1985年   32篇
  1984年   24篇
  1983年   21篇
  1982年   26篇
  1981年   26篇
  1980年   23篇
  1979年   21篇
  1978年   12篇
  1977年   11篇
  1975年   17篇
  1974年   12篇
  1973年   8篇
排序方式: 共有3844条查询结果,搜索用时 15 毫秒
941.
Borowski T  Bassan A  Siegbahn PE 《Biochemistry》2004,43(38):12331-12342
Density functional calculations using the B3LYP functional has been used to study the reaction mechanism of 4-hydroxyphenylpyruvate dioxygenase. The first part of the catalytic reaction, dioxygen activation, is found to have the same mechanism as in alpha-ketoglutarate-dependent enzymes; the ternary enzyme-substrate-dioxygen complex is first decarboxylated to the iron(II)-peracid intermediate, followed by heterolytic cleavage of the O-O bond yielding an iron(IV)-oxo species. This highly reactive intermediate attacks the aromatic ring at the C1 position and forms a radical sigma complex, which can either form an arene oxide or undergo a C1-C2 side-chain migration. The arene oxide is found to have no catalytic relevance. The side-chain migration is a two-step process; the carbon-carbon bond cleavage first affords a biradical intermediate, followed by a decay of this species forming the new C-C bond. The ketone intermediate formed by a 1,2 shift of an acetic acid group rearomatizes either at the active site of the enzyme or in solution. The hypothetical oxidation of the aromatic ring at the C2 position was also studied to shed light on the 4-HPPD product specificity. In addition, the benzylic hydroxylation reaction, catalyzed by 4-hydroxymandelate synthase, was also studied. The results are in good agreement with the experimental findings.  相似文献   
942.
Persson D  Thorén PE  Lincoln P  Nordén B 《Biochemistry》2004,43(34):11045-11055
Reports on serious artifacts associated with the use of cell fixation in studies of the cellular uptake of cell-penetrating peptides, also denoted protein transduction domains, have demonstrated the need for a reevaluation of the current understanding of peptide-mediated cellular delivery of large, hydrophilic molecules. In a recent study on the internalization in unfixed cells of penetratin and its analogues in which tryptophans are substituted for phenylalanines (Pen2W2F), lysines for arginines (PenArg), and arginines for lysines (PenLys), we revealed large dissimilarities in cell interactions among the peptides [Thorén et al. (2003) Biochem. Biophys. Res. Commun. 307, 100-107]. We here investigated possible correlations with their respective affinities for the lipid membranes of large unilamellar vesicles. The variations found in membrane affinity correlated qualitatively with differences in hydrophobicity among the peptides but were by far too small to account for the striking differences in cell membrane binding. Interestingly, we found that the inclusion of a small fraction of lipids conjugated to poly(ethylene glycol) (PEG) in the vesicles both stabilized the vesicle dispersion against peptide-induced aggregation and, furthermore, enhanced the binding of the peptides to the membrane. By use of PEG-conjugated lipids, it could be shown that vesicle aggregation drives an alpha-helix to beta-sheet conformational transition for these peptides. A similar transition was discovered at submicellar concentrations of sodium dodecyl sulfate in aqueous solution for all peptides except PenLys. Finally, significant changes of the contributions to CD spectra from aromatic residues due to their insertion into the membrane were observed.  相似文献   
943.
The suppressors of cytokine signaling (SOCS) family is thought to act largely as a negative regulator of signaling by cytokines and some growth factors. Surprisingly, the SOCS-6 transgenics had no significant defects in the cytokine signaling and hematopoietic system but displayed significant improvements in glucose metabolism. Insulin stimulation of Akt/protein kinase B was also potentiated. Biochemical analysis showed that, after insulin stimulation, SOCS-6 interacted with the monomeric p85 subunit of class-Ia phosphoinositide (PI) 3-kinase but not with p85/p110 dimers. Furthermore, SOCS-6 expression is transiently increased by serum and insulin in normal fibroblasts. However, both the mRNA and protein of SOCS-6 were rapidly degraded after induction by insulin. The degradation of the SOCS-6 protein was partially inhibited by a proteasome inhibitor, suggesting a proteasome-mediated degradation mechanism. In contrast, SOCS-6-associated p85 was not degraded and could be recruited to the newly synthesized SOCS-6 molecules in the presence of insulin, suggesting that SOCS-6 expression and its interaction with p85, but not the degradation, is regulated by insulin. The phenotype of SOCS-6 transgenic mice bears a striking resemblance to p85 knock-out mouse models in which glucose metabolism stimulated by insulin is significantly improved despite reduced activation of PI 3-kinase. This suggests that monomeric p85 might play a physiologically important role in attenuating signaling through PI 3-kinase-dependent pathways in unstimulated cells. Therefore, our results indicate that SOCS-6 may provide a dynamically regulated mechanism by which insulin can transiently overcome the negative effects that p85 monomers have on signaling via PI 3-kinase-dependent signaling pathways.  相似文献   
944.
From glycosylated cell surfaces to sterically stabilized liposomes, polymers attached to membranes attract biological and therapeutic interest. Can the scaling laws of polymer "brushes" describe the physical properties of these coats? We delineate conditions where the Alexander-de Gennes theory of polymer brushes successfully fits the intermembrane distance versus applied osmotic stress data of Kenworthy et al. for poly(ethylene glycol)-grafted multilamellar liposomes. We establish that the polymer density and size in the brush must be high enough that, in a bulk solution of equivalent monomer density, the polymer osmotic pressure is independent of polymer molecular weight (the des Cloizeaux semidilute regime of bulk polymer solutions). The condition that attached polymers behave as semidilute bulk solutions offers a rigorous criterion for brush scaling-law behavior. There is a deep connection between the behaviors of semidilute polymer solutions in bulk and polymers grafted to a surface at a density such that neighbors pack to form a uniform brush. In this regime, two-parameter unconstrained fits of the Alexander-de Gennes brush scaling laws to the Kenworthy et al. data yield effective monomer lengths of 3.3-3.6 A, which agree with structural predictions. The fitted distances between grafting sites are larger than expected from the nominal mole fraction of poly(ethylene glycol)-lipids; the chains apparently saturate the surface. Osmotic stress measurements can be used to estimate the actual densities of membrane-grafted polymers.  相似文献   
945.
946.
The bifunctional dCTP deaminase-dUTPase (DCD-DUT) from Methanocaldococcus jannaschii catalyzes the deamination of the cytosine moiety in dCTP and the hydrolysis of the triphosphate moiety forming dUMP, thereby preventing uracil from being incorporated into DNA. The crystal structure of DCD-DUT has been determined to 1.88-A resolution and represents the first known structure of an enzyme catalyzing dCTP deamination. The functional form of DCD-DUT is a homotrimer wherein the subunits are composed of a central distorted beta-barrel surrounded by two beta-sheets and four helices. The trimeric DCD-DUT shows structural similarity to trimeric dUTPases at the tertiary and quaternary levels. There are also additional structural elements in DCD-DUT compared with dUTPase because of a longer primary structure. Four of the five conserved sequence motifs that create the active sites in dUTPase are found in structurally equivalent positions in DCD-DUT. The last 25 C-terminal residues of the 204-residue-long DCD-DUT are not visible in the electron density map, but, analogous to dUTPases, the C terminus is probably ordered, closing the active site upon catalysis. Unlike other enzymes catalyzing the deamination of cytosine compounds, DCD-DUT is not exploiting an enzyme-bound metal ion such as zinc or iron for nucleophile generation. The active site contains two water molecules that are engaged in hydrogen bonds to the invariant residues Ser118, Arg122, Thr130, and Glu145. These water molecules are potential nucleophile candidates in the deamination reaction.  相似文献   
947.
We have tested a new fiber-optic pressure recording system, Samba, with a thin fiber [outer diameter (OD) = 0.25 mm] and a pressure sensor (length and OD = 0.42 mm) attached to the end. The accuracy of the system tested in vitro was good, with a coefficient of variation of 2.54% at 100 mmHg. The drift was <0.45 mmHg/h, and the temperature sensitivity was approximately 0.07 mmHg/1 degrees C between 22 and 37 degrees C. The frequency response characteristics were similar to a 1.4-Fr Millar catheter (0-200 Hz). Introduction of the Samba sensor from the right carotid artery into the left ventricle in six mice caused no drop in mean aortic pressure, whereas introduction of a 1.4-Fr Millar catheter (OD = 0.47 mm; n = 6) caused a pressure drop from 91.6 +/- 9.2 to 65.1 +/- 6.2 mmHg; P < 0.05. Thus the Samba sensor system may represent a new alternative to assess hemodynamic variables in the murine cardiovascular system.  相似文献   
948.
We assessed the hypothesis that the epinephrine surge present during sepsis accelerates aerobic glycolysis and lactate production by increasing activity of skeletal muscle Na(+)-K(+)-ATPase. Healthy volunteers received an intravenous bolus of endotoxin or placebo in a randomized order on two different days. Endotoxemia induced a response resembling sepsis. Endotoxemia increased plasma epinephrine to a maximum at t = 2 h of 0.7 +/- 0.1 vs. 0.3 +/- 0.1 nmol/l (P < 0.05, n = 6-7). Endotoxemia reduced plasma K(+) reaching a nadir at t = 5 h of 3.3 +/- 0.1 vs. 3.8 +/- 0.1 mmol/l (P < 0.01, n = 6-7), followed by an increase to placebo level at t = 7-8 h. During the declining plasma K(+), a relative accumulation of K(+) was seen reaching a maximum at t = 6 h of 8.7 +/- 3.8 mmol/leg (P < 0.05). Plasma lactate increased to a maximum at t = 1 h of 2.5 +/- 0.5 vs. 0.9 +/- 0.1 mmol/l (P < 0.05, n = 8) in association with increased release of lactate from the legs. These changes were not associated with hypoperfusion or hypoxia. During the first 24 h after endotoxin infusion, renal K(+) excretion was 27 +/- 7 mmol, i.e., 58% higher than after placebo. Combination of the well-known stimulatory effect of catecholamines on skeletal muscle Na(+)-K(+)-ATPase activity, with the present confirmation of an expected Na(+)-K(+)- ATPase-induced decline in plasma K(+), suggests that the increased lactate release was due to increased Na(+)-K(+)-ATPase activity, supporting our hypothesis. Thus increased lactate levels in acutely and severely ill patients should not be managed only from the point of view that it reflects hypoxia.  相似文献   
949.
Inhibitors of human immunodeficiency virus type 1 attachment (CD4-immunoglobulin G subclass 2), CCR5 usage (PRO 140), and fusion (T-20) were tested on diverse primary cell types that represent the major targets both for infection in vivo and for the inhibition of trans infection of target cells by virus bound to dendritic cells. Although minor cell-type-dependent differences in potency were observed, each inhibitor was active on each cell type and trans infection was similarly vulnerable to inhibition at each stage of the fusion cascade.  相似文献   
950.
Ward P  Elias P  Linden RM 《Journal of virology》2003,77(21):11480-11490
In cultured cells, adeno-associated virus (AAV) replication requires coinfection with a helper virus, either adenovirus or herpesvirus. In the absence of helper virus coinfection AAV can integrate its genome site specifically into the AAVS1 region of chromosome 19. Upon subsequent infection with a helper virus, the AAV genome is released from chromosome 19 by a process termed rescue, and productive replication ensues. The AAV genome cloned into a plasmid vector can also serve to initiate productive AAV replication. When such constructs are transfected into cells and those cells are simultaneously or subsequently infected with a helper virus, the AAV genome is released from the plasmid. This process is thought to serve as a model for rescue from the human genomic site. In this report we present a model for rescue of AAV genomes by replication. A hallmark of this model is the production of a partially single-stranded and partially double-stranded molecule. We show that the AAV2 Rep 68 protein, together with the UL30/UL42 herpes simplex virus type 1 DNA polymerase and the UL29 single-strand DNA binding protein ICP8, is sufficient to efficiently and precisely rescue AAV from a plasmid in a way that is dependent on the AAV inverted terminal repeat sequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号