首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3668篇
  免费   265篇
  国内免费   5篇
  3938篇
  2023年   9篇
  2022年   18篇
  2021年   53篇
  2020年   30篇
  2019年   44篇
  2018年   49篇
  2017年   56篇
  2016年   94篇
  2015年   141篇
  2014年   156篇
  2013年   224篇
  2012年   273篇
  2011年   216篇
  2010年   177篇
  2009年   129篇
  2008年   229篇
  2007年   236篇
  2006年   178篇
  2005年   197篇
  2004年   187篇
  2003年   183篇
  2002年   169篇
  2001年   51篇
  2000年   43篇
  1999年   40篇
  1998年   50篇
  1997年   33篇
  1996年   31篇
  1995年   42篇
  1994年   47篇
  1993年   39篇
  1992年   38篇
  1991年   29篇
  1990年   25篇
  1989年   22篇
  1988年   23篇
  1987年   33篇
  1986年   23篇
  1985年   34篇
  1984年   27篇
  1983年   22篇
  1982年   27篇
  1981年   26篇
  1980年   23篇
  1979年   23篇
  1978年   12篇
  1977年   11篇
  1976年   9篇
  1975年   18篇
  1974年   12篇
排序方式: 共有3938条查询结果,搜索用时 0 毫秒
51.
The protein kinase C (PKC) inhibitor staurosporine was found to dramatically alter the actin microfilament cytoskeleton of a variety of cultured cells, including PTK2 epithelial cells, Swiss 3T3 fibroblasts, and human foreskin fibroblasts. For example, PTK2 cells exposed to 20 nM staurosporine exhibited a progressive thinning and loss of cytoplasmic actin microfilament bundles over a 60-min period. During this time microtubule and intermediate filament systems remained intact (as shown by immunofluorescence and at higher resolution by photoelectron microscopy), and the cells remained spread even though microfilament bundles were absent. Higher doses of staurosporine or longer exposure times at lower doses resulted in morphological alterations, but even severely arborized cells recovered normal morphology and actin patterns after a wash and an incubation for several hours in fresh medium. The actin filament disruption induced by staurosporine was distinguishable from the actin reorganization induced by exposure to the tumor promoter (and activator of PKC) phorbol myristate acetate (PMA). Swiss 3T3 cells made deficient in PKC by prolonged exposure to PMA (PKC down-regulation) exhibited actin alterations in response to staurosporine which were comparable to those in cells which had not been exposed to the phorbol ester. In a parallel control experiment, the actin cytoskeleton of PKC-deficient 3T3 cells was unaffected in response to PMA, consistent with down-regulation of this kinase. While the exact mechanism of staurosporine-induced actin reorganization remains to be determined, the observed effects of staurosporine on PKC-deficient cells make a role for PKC unlikely. These results indicate the need for care when staurosporine is employed as an inhibitor of protein kinase C in studies involving intact cells.  相似文献   
52.
Fatty acid ethyl esters are a family of neutral lipids that are the products of esterification of fatty acids with ethanol. Unlike other pathways of ethanol metabolism, ethyl esters are present in numerous human organs which are the targets of ethanol-induced damage. In the present study, we have shown that fatty acid ethyl esters are synthesized by a hepatoma cell line in tissue culture when exposed to ethanol concentrations easily attained by man during social drinking. Unlike alcohol dehydrogenase, the enzyme(s) responsible for synthesis of ethyl esters are membrane-bound and concentrated in the microsomal fraction of rat hepatocytes. In addition, fatty acid ethyl esters are hydrolyzed to free fatty acids and ethanol by membrane-bound enzyme(s) that are enriched in the microsomal and mitochondrial-lysosomal fractions. Intracellular hydrolysis of fatty acid ethyl esters release free fatty acids which are preferentially incorporated into cellular cholesterol esters. Thus, we have shown that a hepatocellular line exposed to concentrations of ethanol easily achieved in man by social drinking utilize endogenous fatty acids to form long-lived ethanol metabolites, fatty acid ethyl esters. Importantly, this family of neutral lipids may act as biochemical mediators of ethanol-induced cell damage, including the changes in cholesterol metabolism noted in chronic alcoholics.  相似文献   
53.
Summary Absolute circulating number and functions of blood monocytes (i.e., pinocytosis, phagocytosis, and chemotaxis) were studied in 25 patients with untreated bronchogenic carcinoma and in 28 control subjects. The absolute circulating monocyte count was increased in 20 (80%) of the patients. There was no difference in the pinocytic and phagocytic activity of patient and control monocytes. In contrast, patient monocytes showed depressed chemotactic responsiveness. This defect was more severe in small cell anaplastic carcinoma than in the other histologic types of bronchogenic carcinoma (P=0.001), and may explain the difference in macrophage infiltration seen in solid tumours of the lung. There was no correlation between chemotaxis and clinical stage. Depressed chemotaxis may be related to a plasma factor, since patient plasma inhibited the chemotaxis of control monocytes as well as the activity of chemotactic agents. The defective chemotaxis and the presence of plasma inhibitory activity may interfere with the ability of blood monocytes to accumulate as macrophages in tumour sites. Abbreviations used in this paper are: MCR, monocyte chemotactic response; SAC, small cell anaplastic bronchogenic carcinoma; OBC, non-small cell bronchogenic carcinoma MEM, Eagle's minimal essential medium; CFI, chemotactic factor inhibitor(s); HSA, human serum albumin  相似文献   
54.
A technique for the simultaneous determination of [35S]sulfide and [14C]carbon dioxide produced in anaerobic aqueous samples dual-labeled with [35S]sulfate and a 14C-organic substrate is described. The method involves the passive distillation of sulfide and carbon dioxide from an acidified water sample and their subsequent separation by selective chemical absorption. The recovery of sulfide was 93% for amounts ranging from 0.35 to 50 μmol; recovery of carbon dioxide was 99% in amounts up to 20 μmol. Within these delineated ranges of total sulfide and carbon dioxide, 1 nmol of [35S]sulfide and 7.5 nmol of [14C]carbon dioxide were separated and quantified. Correction factors were formulated for low levels of radioisotopic cross-contamination by sulfide, carbon dioxide, and volatile organic acids. The overall standard error of the method was ±4% for sulfide and ±6% for carbon dioxide.  相似文献   
55.
56.
Human NHIK 3025 cells growing exponentially in 30% or 3% serum had population doubling times of 19.1 and 27.6 hours, respectively. These values were equal to the calculated protein doubling times (17.6 and 26.5 hours, respectively), showing that the cells were in balanced growth at both serum concentrations. Stepdown from 30% to 3% serum reduced the rate of protein synthesis within 1–2 hours, from 5.7% hour to 4.3% hour, while the rate of protein degradation was unchanged (1.7%/hour). In cells synchronized by mitotic selection from an exponentially growing population, the median cell cycle durations in 30% and 3% serum were 17.2 and 23.6 hours, respectively, which were also in good agreement with the protein doubling times. The median G1 durations were 7.1 and 9.6 hours, respectively. Thus the duration of G1 relative to the total cell cycle duration was the same in the two cases. Complete removal of serum for a period of 3 hours resulted in a 3-hour prolongation of the cell cycle regardless of the time after mitotic selection at which the serum was removed. For synchronized cells, the rate of entry into both the S phase and into the subsequent cell cycle were reduced in 3% serum as compared to 30% serum, the former rate being significantly greater than the latter at both serum concentrations. Our results thus indicate that these cells are continuously dependent upon serum throughout the entire cell cycle.  相似文献   
57.
58.
Summary The regulation of the synthesis of nucleoside metabolizing enzymes has been studied in cya and crp mutant strains of Escherichia coli.The synthesis of the cyt-enzymes, cytidine deaminase and uridine phosphorylase regulated by the cytR gene product, is activated by the cAMP-CRP complex. On the other hand the synthesis of the deoenzymes: deoxyriboaldolase, thymidine phosphorylase, phosphodeoxyribomutase and purine nucleoside phosphorylase, appears to be increased if an active cAMP-CRP complex cannot be formed.It also seems that nucleosides serve as poor carbon sources for cya and crp mutants; this could not solely be explained by low levels of nucleoside metabolizing enzymes nor by a deficiency in nucleoside uptake. Addition of casamino acids stimulated the growth of cya and crp mutants, with nucleosides as carbon sources. When grown on glucose and casamino acids growth could be stimulated by adenine and hypoxanthine nucleosides; these results suggest an impaired nitrogen metabolism in cya and crp mutants.Abbreviations and Symbols cAMP cyclic adenosine 3:5-monophosphate - CRP cAMP receptor protein. Genes coding for: adenyl cyclase - cya cAMP receptor protein - crp cytidine deaminase - cdd uridine phosphorylase - udp thymidine phosphorylase - tpp purine nucleoside phosphorylase - pup; cytR regulatory gene for cdd, udp, dra, tpp, drm, and pup - deoR regulatory gene for dra, tpp, drm, and pup  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号