首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10680篇
  免费   884篇
  国内免费   7篇
  11571篇
  2023年   50篇
  2022年   101篇
  2021年   202篇
  2020年   123篇
  2019年   158篇
  2018年   191篇
  2017年   202篇
  2016年   334篇
  2015年   504篇
  2014年   570篇
  2013年   734篇
  2012年   800篇
  2011年   716篇
  2010年   496篇
  2009年   427篇
  2008年   651篇
  2007年   656篇
  2006年   561篇
  2005年   545篇
  2004年   542篇
  2003年   503篇
  2002年   479篇
  2001年   117篇
  2000年   94篇
  1999年   115篇
  1998年   133篇
  1997年   93篇
  1996年   98篇
  1995年   93篇
  1994年   83篇
  1993年   87篇
  1992年   74篇
  1991年   60篇
  1990年   55篇
  1989年   52篇
  1988年   46篇
  1987年   59篇
  1986年   38篇
  1985年   63篇
  1984年   58篇
  1983年   52篇
  1982年   60篇
  1981年   54篇
  1980年   42篇
  1979年   36篇
  1978年   39篇
  1977年   28篇
  1976年   25篇
  1975年   23篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.

Background  

MicroRNAs (miRNAs) are endogenous 21 to 23-nucleotide RNA molecules that regulate protein-coding gene expression in plants and animals via the RNA interference pathway. Hundreds of them have been identified in the last five years and very recent works indicate that their total number is still larger. Therefore miRNAs gene discovery remains an important aspect of understanding this new and still widely unknown regulation mechanism. Bioinformatics approaches have proved to be very useful toward this goal by guiding the experimental investigations.  相似文献   
992.

Background  

Gremmeniella abietina (Lagerb.) Morelet is an ascomycete fungus that causes stem canker and shoot dieback in many conifer species. The fungus is widespread and causes severe damage to forest plantations in Europe, North America and Asia. To facilitate early diagnosis and improve measures to control the spread of the disease, rapid, specific and sensitive detection methods for G. abietina in conifer hosts are needed.  相似文献   
993.

Background  

The development of multiphoton laser scanning microscopy has greatly facilitated the imaging of living tissues. However, the use of genetically encoded fluorescent proteins to distinguish different cell types in living animals has not been described at single cell resolution using multiphoton microscopy.  相似文献   
994.
Sarcopenia, loss of skeletal muscle mass, is a hallmark of aging commonly attributed to a decreased capacity to maintain muscle tissue in senescence, yet the mechanism behind the muscle wasting remains unresolved. To address these issues we have explored a rodent model of sarcopenia and age-related sensorimotor impairment, allowing us to discriminate between successfully and unsuccessfully aged cohort members. Immunohistochemistry and staining of cell nuclei revealed that senescent muscle has an increased density of cell nuclei, occurrence of aberrant fibers and fibers expressing embryonic myosin. Using real-time PCR we extend the findings of increased myogenic regulatory factor mRNA to show that very high levels are found in unsuccessfully aged cohort members. This pattern is also reflected in the number of embryonic myosin-positive fibers, which increase with the degree of sarcopenia. In addition, we confirm that there is no local down-regulation of IGF-I and IGF-IR mRNA in aged muscle tissue; on the contrary, the most sarcopenic individuals showed significantly higher local expression of IGF-I mRNA. Combined, our results show that the initial drive to regenerate myofibers is most marked in cases with the most advanced loss of muscle mass, a pattern that may have its origin in differences in the rate of tissue deterioration and/or that regenerating myofibers in these cases fail to mature into functional fibers. Importantly, the genetic background is a determinant of the pace of progression of sarcopenia.  相似文献   
995.
996.
Watching ice floes glide by on the Hudson River from Eric Kandel's office, one gets a sense of placid reflection tempered by constant action-an apt analogy for Kandel's ability to calmly manage several ongoing projects and commitments at once. In addition to his well-lauded, ongoing research at Columbia University Medical Center's New York State Psychiatric Institute, Kandel has written several books on neurobiology, behavior, and memory. In addition to being a Nobel Laureate Scientist, he is well-known as an editor of the seminal textbook Principles of Neural Science. He and his colleagues are in the midst of working on a new edition of Principles, and he is working on a scientific autobiography. MI sat down with Dr. Kandel and discussed with him a range of topics including childhood and early career influences, intramural research at the NIH, the HHMI, ethical considerations of altering memory and, of course, Aplysia.  相似文献   
997.
998.
The molecular mechanisms underlying the relationship between low-density lipoprotein (LDL) and the risk of atherosclerosis are not clear. Therefore, detailed information about the protein composition of LDL may contribute to reveal its role in atherogenesis and the mechanisms that lead to coronary disease in humans. Here, we sought to map the proteins in human LDL by a proteomic approach. LDL was isolated by two-step discontinuous density-gradient ultracentrifugation and the proteins were separated with two-dimensional gel electrophoresis and identified with peptide mass fingerprinting, using matrix assisted laser desorption/ionization-time of flight-mass spectrometry and with amino acid sequencing using electrospray ionization tandem mass spectrometry. These procedures identified apo B-100, apo C-II, apo C-III (three isoforms), apo E (four isoforms), apo A-I (two isoforms), apo A-IV, apo J and apo M (three isoforms not previously described). In addition, three proteins that have not previously been identified in LDL were found: serum amyloid A-IV (two isoforms), calgranulin A, and lysozyme C. The identities of apo M, calgranulin A, and lysozyme C were confirmed by sequence information obtained after collision-induced dissociation fragmentation of peptides characteristic for these proteins. Moreover, the presence of lysozyme C was further corroborated by demonstrating enriched hydrolytic activity in LDL against Micrococcus lysodeikticus. These results indicate that in addition to the dominating apo B-100, LDL contains a number of other apolipoproteins, many of which occur in different isoforms. The demonstration, for the first time, that LDL contains calgranulin A and lysozyme C raises the possibility that LDL proteins may play hitherto unknown role(s) in immune and inflammatory reactions of the arterial wall.  相似文献   
999.
1000.
The transmembrane topology of presenilins is still the subject of debate despite many experimental topology studies using antibodies or gene fusions. The results from these studies are partly contradictory and consequently several topology models have been proposed. Studies of presenilin-interacting proteins have produced further contradiction, primarily regarding the location of the C-terminus. It is thus impossible to produce a topology model that agrees with all published data on presenilin. We have analyzed the presenilin topology through computational sequence analysis of the presenilin family and the homologous presenilin-like protein family. Members of these families are intramembrane-cleaving aspartyl proteases. Although the overall sequence homology between the two families is low, they share the conserved putative active site residues and the conserved 'PAL' motif. Therefore, the topology model for the presenilin-like proteins can give some clues about the presenilin topology. Here we propose a novel nine-transmembrane topology with the C-terminus in the extracytosolic space. This model has strong support from published data on gamma-secretase function and presenilin topology. Contrary to most presenilin topology models, we show that hydrophobic region X is probably a transmembrane segment. Consequently, the C-terminus would be located in the extracytosolic space. However, the last C-terminal amino acids are relatively hydrophobic and in conjunction with existing experimental data we cannot exclude the possibility that the extreme C-terminus could be buried within the gamma-secretase complex. This might explain the difficulties in obtaining consistent experimental evidence regarding the location of the C-terminal region of presenilin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号