首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1977年   1篇
排序方式: 共有39条查询结果,搜索用时 685 毫秒
31.
A bacterial strain ANT-3b was isolated at the sea-ice seawater interface from Terra Nova Bay station, Ross Sea, Antarctica. It was isolated on mineral medium supplemented with 2% diesel fuel as a sole carbon and energy source and grown routinely on 2% n-hexadecane. Analysis of 16S rRNA gene sequence indicates that the strain has 99.8% sequence similarity with Halomonas neptunia. The strain ANT-3b was grown in mineral medium supplemented with n-hexadecane between 4 and 20 degrees C, but not at 30 degrees C. The maximum degradation rate of the n-alkane was measured at 15 degrees C, with 5.6+/-1.7 mg O2 microg(-1) protein d(-1). The strain ANT-3b produced emulsifying compounds when grown on n-hexadecane, but not on mineral medium supplemented with D-fructose. A preliminary characterisation of the emulsifier was carried out. The lipid moiety contained a mixture of fatty acids with a following composition in molar ratio: caprylic acid 18.85, myristic acid 1.0, palmitic acid 9.68, palmitoleic acid 5.69 and oleic acid 1.26. The polysaccharide moiety also contained a mixture of sugars with the following molar ratio: mannose 1.71, galactose 1.00 and glucose 2.96. The molecular weight of the glycolipid component determined by gel permeation chromatography was in the 18 kDa range and contained smaller fragments, possibly oligomeric contaminants. Transmission electron microscopy showed contact between the glycolipid secreted by the strain and n-hexadecane broken down to nanodroplets at the water interface, to form a material with mesophase (liquid crystal) organisation.  相似文献   
32.
Strains DBVPG 6662 and DBVPG 6739 of Rhodosporidium toruloides, a basidiomycete yeast, grew on thiosulfate as a sulfur source and glucose (2 g liter(-1) or 10.75 mM) as a carbon source. DBVPG 6662 has a defective sulfate transport system, whereas DBVPG 6739 barely grew on sulfate. They were compared for the ability to use dibenzothiophene (DBT) and related organic sulfur compounds as sulfur sources. In the presence of glucose as a carbon source and DBT as a sulfur source, strain DBVPG 6662 grew better than DBVPG 6739. In the presence of thiosulfate as a sulfur source, the two yeast strains did not use DBT, DBT-sulfone, benzenesulfonic acid, biphenyl, and fluorene. When the two strains were grown in the presence of glucose, strain DBVPG 6662 transformed 27% of the DBT present (10 micro M) at a rate of 0.023 micro mol liter(-1) h(-1) in 36 h. Traces of 2,2'-dihydroxylated biphenyl were transiently accumulated under these conditions. When the same strain was grown on glucose in the presence of a higher concentration of DBT (0.5 g liter(-1)), mainly in an insoluble form, the whole surface of the DBT crystals was colonized by a thick mycelium. This adherent structure was imaged by confocal microscopy with fluorescent concanavalin A, a lectin that specifically binds glucose and mannose residues. When DBVPG 6662 was grown on glucose in the presence of a commercial emulsion of bitumen, i.e., orimulsion, 68% of the benzo- and dibenzothiophenes and DBTs was removed after 15 days of incubation. The fungus adhered by hyphae to orimulsion droplets. When cultivated in the presence of commercial emulsifier-free fuel oil containing alkylated benzothiophenes and DBTs and having a composition similar to that of orimulsion, strain DBVPG 6662 removed only 11% of the total organic sulfur that occurs in the medium and did not adhere to the oil droplets. These results indicate that strain DBVPG 6662 is able to utilize the organic sulfur of DBT and a large variety of thiophenic compounds that occur extensively in commercial fuel oils by physically adhering to the organic sulfur source.  相似文献   
33.
34.
The dynamics of a microbial population isolated from superficial waters of Venice Lagoon and the ability to utilise diesel fuel (n-alkanes mixture C12-C28) as the sole carbon and energy source were studied in a long-term reconstruction experiment. The reconstructed microbial population consisted of three bacterial strains belonging to the species Acinetobacter venetianus, Pseudomonas putida, and Alcaligenes faecalis, which were able to oxidise n-alkanes to alkanoates, n-alkanols to alkanoates, or only n-alkanoates, respectively. Three different approaches: plate counting, cell counting by epifluorescence microscopy with DAPI staining, and by fluorescence in situ hybridisation (FISH) by using a probe conjugate with fluoresceine isothiocyanate specifically targeted towards the 16S rRNA of bacteria belonging to the genus Acinetobacter were used to monitor the growth of the bacterial population. The growth of A. venetianus was stimulated by the presence of other strains, suggesting a beneficial interaction. After the first week of growth A. venetianus cells formed aggregates, as confirmed by confocal microscopy (CLSM), which allowed them to be distinguished from free cells. A relationship between cell number and measured areas (μm2) per aggregate was found. Each cell presented an average surface of 1.21 μm2. Each aggregate was formed by a cellular monolayer biofilm consisting of up to several thousands of cells. The A. venetianus aggregates increased in number and size over time, but after two weeks fragmentation events, which had a beneficial effect on the growth of P. putida and A. faecalis, occurred. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
35.
An iron-poor stream of nearly neutral pH polluted by mine tailings has been investigated for a natural phenomenon responsible for the polishing of heavy metals in mine wastewaters. A white mineralized mat, which was determined to be hydrozincite [Zn(5)(CO(3))(2)(OH)(6)] by X-ray diffraction analysis, was observed in the stream sediments mainly in spring. The precipitate shows a total organic matter residue of 10% dry weight and contains high concentrations of Pb, Cd, Ni, Cu, and other metals. Scanning electron microscopy analysis suggests that hydrozincite is mainly of biological origin. Dormant photosynthetic microorganisms have been retrieved from 1-year-old dry hydrozincite. The autofluorescent microorganisms were imaged by a scanning confocal laser microscope. A photosynthetic filamentous bacterium, classified as Scytonema sp. strain ING-1, was found associated with microalga Chlorella sp. strain SA1. This microbial community is responsible for the natural polishing of heavy metals in the water stream by coprecipitation with hydrozincite.  相似文献   
36.
Climate change can affect biotic interactions, and the impacts of climate on biotic interactions may vary across climate gradients. Climate affects biotic interactions through multiple drivers, although few studies have investigated multiple climate drivers in experiments. We examined the effects of experimental watering, warming, and predator access on leaf water content and herbivory rates of woolly bear caterpillars (Arctia virginalis) on a native perennial plant, pacific silverweed (Argentina anserina ssp. pacifica), at two sites across a gradient of precipitation in coastal California. Based on theory, we predicted that watering should increase herbivory at the drier end of the gradient, predation should decrease herbivory, and watering and warming should have positive interacting effects on herbivory. Consistent with our predictions, we found that watering only increased herbivory under drier conditions. However, watering increased leaf water content at both wetter and drier sites. Warming increased herbivory irrespective of local climate and did not interact with watering. Predation did not affect herbivory rates. Given predictions that the study locales will become warmer and drier with climate change, our results suggest that the effects of future warming and drying on herbivory may counteract each other in drier regions of the range of Argentina anserina. Our findings suggest a useful role for range‐limit theory and the stress‐gradient hypothesis in predicting climate change effects on herbivory across stress gradients. Specifically, if climate change decreases stress, herbivory may increase, and vice versa for increasing stress. In addition, our work supports previous suggestions that multiple climate drivers are likely to have dampening effects on biotic interactions due to effects in different directions, though this is context‐dependent.  相似文献   
37.
38.
The adhesion of a recently described species, Acinetobacter venetianus VE-C3 (F. Di Cello, M. Pepi, F. Baldi, and R. Fani, Res. Microbiol. 148:237–249, 1997), to diesel fuel (a mixture of C12 to C28 n-alkanes) and n-hexadecane was studied and compared to that of Acinetobacter sp. strain RAG-1, which is known to excrete the emulsifying lipopolysaccharide, emulsan. Oxygen consumption rates, biomass, cell hydrophobicity, electrophoretic mobility, and zeta potential were measured for the two strains. The dropping-mercury electrode (DME) was used as an in situ adhesion sensor. In seawater, RAG-1 was hydrophobic, with an electrophoretic mobility (μ) of −0.38 × 10−8 m2 V−1 s−1 and zeta potential (ζ) of −4.9 mV, while VE-C3 was hydrophilic, with μ of −0.81 × 10−8 m2 V−1 s−1 and ζ of −10.5 mV. The microbial adhesion to hydrocarbon (MATH) test showed that RAG-1 was always hydrophobic whereas the hydrophilic VE-C3 strain became hydrophobic only after exposure to n-alkanes. Adhesion of VE-C3 cells to diesel fuel was partly due to the production of capsular polysaccharides (CPS), which were stained with the lectin concanavalin A (ConA) conjugated to fluorescein isothiocyanate and observed in situ by confocal microscopy. The emulsan from RAG-1, which was negative to ConA, was stained with Nile Red fluorochrome instead. Confocal microscope observations at different times showed that VE-C3 underwent two types of adhesion: (i) cell-to-cell interactions, preceding the cell adhesion to the n-alkane, and (ii) incorporation of nanodroplets of n-alkane into the hydrophilic CPS to form a more hydrophobic polysaccharide–n-alkane matrix surrounding the cell wall. The incorporation of n-alkanes as nanodroplets into the CPS of VE-C3 cells might ensure the partitioning of the bulk apolar phase between the aqueous medium and the outer cell membrane and thus sustain a continuous growth rate over a prolonged period.  相似文献   
39.
Strains DBVPG 6662 and DBVPG 6739 of Rhodosporidium toruloides, a basidiomycete yeast, grew on thiosulfate as a sulfur source and glucose (2 g liter−1 or 10.75 mM) as a carbon source. DBVPG 6662 has a defective sulfate transport system, whereas DBVPG 6739 barely grew on sulfate. They were compared for the ability to use dibenzothiophene (DBT) and related organic sulfur compounds as sulfur sources. In the presence of glucose as a carbon source and DBT as a sulfur source, strain DBVPG 6662 grew better than DBVPG 6739. In the presence of thiosulfate as a sulfur source, the two yeast strains did not use DBT, DBT-sulfone, benzenesulfonic acid, biphenyl, and fluorene. When the two strains were grown in the presence of glucose, strain DBVPG 6662 transformed 27% of the DBT present (10 μM) at a rate of 0.023 μmol liter−1 h−1 in 36 h. Traces of 2,2′-dihydroxylated biphenyl were transiently accumulated under these conditions. When the same strain was grown on glucose in the presence of a higher concentration of DBT (0.5 g liter−1), mainly in an insoluble form, the whole surface of the DBT crystals was colonized by a thick mycelium. This adherent structure was imaged by confocal microscopy with fluorescent concanavalin A, a lectin that specifically binds glucose and mannose residues. When DBVPG 6662 was grown on glucose in the presence of a commercial emulsion of bitumen, i.e., orimulsion, 68% of the benzo- and dibenzothiophenes and DBTs was removed after 15 days of incubation. The fungus adhered by hyphae to orimulsion droplets. When cultivated in the presence of commercial emulsifier-free fuel oil containing alkylated benzothiophenes and DBTs and having a composition similar to that of orimulsion, strain DBVPG 6662 removed only 11% of the total organic sulfur that occurs in the medium and did not adhere to the oil droplets. These results indicate that strain DBVPG 6662 is able to utilize the organic sulfur of DBT and a large variety of thiophenic compounds that occur extensively in commercial fuel oils by physically adhering to the organic sulfur source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号