首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   13篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2018年   1篇
  2016年   5篇
  2015年   2篇
  2014年   11篇
  2013年   11篇
  2012年   11篇
  2011年   7篇
  2010年   8篇
  2009年   8篇
  2008年   13篇
  2007年   11篇
  2006年   8篇
  2005年   5篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1974年   2篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
61.
62.
Enantiomerically enriched isoparaconic acid derivatives were obtained by kinetic enzymatic resolution. To explain the solvent dependence observed for their optical rotatory power a computational investigation of their chiroptical properties was performed. Chirality 26:640–650, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
63.
The broadly neutralizing antibodies HIV 2F5 and 4E10, which bind to overlapping epitopes in the membrane-proximal external region of the fusion protein gp41, have been proposed to use a two-step mechanism for neutralization; first, they bind and preconcentrate at the viral membrane through their long, hydrophobic CDRH3 loops, and second, they form a high affinity complex with the protein epitope. Accordingly, mutagenesis of the CDRH3 can abolish their neutralizing activity, with no change in the affinity for the peptide epitope. We show here that we can mimic this mechanism by conjugating a cholesterol group outside of the paratope of an antibody. Cholesterol-conjugated antibodies bind to lipid raft domains on the membrane, and because of this enrichment, they show increased antiviral potency. In particular, we find that cholesterol conjugation (i) rescues the antiviral activity of CDRH3-mutated 2F5, (ii) increases the antiviral activity of WT 2F5, (iii) potentiates the non-membrane-binding HIV antibody D5 10–100-fold (depending on the virus strain), and (iv) increases synergy between 2F5 and D5. Conjugation can be made at several positions, including variable and constant domains. Cholesterol conjugation therefore appears to be a general strategy to boost the potency of antiviral antibodies, and, because membrane affinity is engineered outside of the antibody paratope, it can complement affinity maturation strategies.  相似文献   
64.
65.
In glaucoma the retinal ganglion cells of the retina die through the induction of apoptosis leading to excavation of the optic nerve and blindness. Mutations in the optineurin (optic neuropathy inducing) protein were found associated with an adult form of glaucoma. To date, the role of optineurin in the neurodegeneration process that occurs during glaucoma is still unknown. We now report that in response to an apoptotic stimulus, optineurin changes subcellular localization and translocates from the Golgi to the nucleus. This translocation is dependent on the GTPase activity of Rab8, an interactor of optineurin. Furthermore, we demonstrate that the overexpression of optineurin protects cells from H2O2-induced cell death and blocks cytochrome c release from the mitochondria. A mutated form of optineurin, E50K, identified in normal tension glaucoma patients loses its ability to translocate to the nucleus and when overexpressed compromises the mitochondrial membrane integrity resulting in cells that are less fit to survive under stress conditions. The correlation between optineurin function and cell survival will be key to begin to understand retinal ganglion cell biology and signaling and to design general "survival" strategies to treat a disease of such a complex etiology as glaucoma.  相似文献   
66.
After few days of intense immunoglobulin (Ig) secretion, most plasma cells undergo apoptosis, thus ending the humoral immune response. We asked whether intrinsic factors link plasma cell lifespan to Ig secretion. Here we show that in the late phases of plasmacytic differentiation, when antibody production becomes maximal, proteasomal activity decreases. The excessive load for the reduced proteolytic capacity correlates with accumulation of polyubiquitinated proteins, stabilization of endogenous proteasomal substrates (including Xbp1s, IkappaBalpha, and Bax), onset of apoptosis, and sensitization to proteasome inhibitors (PI). These events can be reproduced by expressing Ig-mu chain in nonlymphoid cells. Our results suggest that a developmental program links plasma cell death to protein production, and help explaining the peculiar sensitivity of normal and malignant plasma cells to PI.  相似文献   
67.
Neurons display a high degree of variability and diversity in the expression and regulation of their voltage-dependent ionic channels. Under low level of synaptic background a number of physiologically distinct cell types can be identified in most brain areas that display different responses to standard forms of intracellular current stimulation. Nevertheless, it is not well understood how biophysically different neurons process synaptic inputs in natural conditions, i.e., when experiencing intense synaptic bombardment in vivo. While distinct cell types might process synaptic inputs into different patterns of action potentials representing specific “motifs” of network activity, standard methods of electrophysiology are not well suited to resolve such questions. In the current paper we performed dynamic clamp experiments with simulated synaptic inputs that were presented to three types of neurons in the juxtacapsular bed nucleus of stria terminalis (jcBNST) of the rat. Our analysis on the temporal structure of firing showed that the three types of jcBNST neurons did not produce qualitatively different spike responses under identical patterns of input. However, we observed consistent, cell type dependent variations in the fine structure of firing, at the level of single spikes. At the millisecond resolution structure of firing we found high degree of diversity across the entire spectrum of neurons irrespective of their type. Additionally, we identified a new cell type with intrinsic oscillatory properties that produced a rhythmic and regular firing under synaptic stimulation that distinguishes it from the previously described jcBNST cell types. Our findings suggest a sophisticated, cell type dependent regulation of spike dynamics of neurons when experiencing a complex synaptic background. The high degree of their dynamical diversity has implications to their cooperative dynamics and synchronization.  相似文献   
68.
A novel series of 3-amino-1H-thieno[3,2-c]pyrazole derivatives demonstrating high potency in inhibiting Aurora kinases was developed. Here we describe the synthesis and a preliminary structure–activity relationship, which led to the discovery of a representative compound (38), which showed low nanomolar inhibitory activity in the anti-proliferation assay and was able to block the cell cycle in HCT-116 cell line. This compound demonstrated favorable pharmacokinetic properties and good efficacy in the HL-60 xenograft tumor model.  相似文献   
69.
70.
Structural basis for the nuclear export activity of Importin13   总被引:1,自引:0,他引:1  
Importin13 (Imp13) is a bidirectional karyopherin that can mediate both import and export of cargoes. Imp13 recognizes several import cargoes, which include the exon junction complex components Mago‐Y14 and the E2 SUMO‐conjugating enzyme Ubc9, and one known export cargo, the translation initiation factor 1A (eIF1A). To understand how Imp13 can perform double duty, we determined the 3.6‐Å crystal structure of Imp13 in complex with RanGTP and with eIF1A. eIF1A binds at the inner surface of the Imp13 C‐terminal arch adjacent and concomitantly to RanGTP illustrating how eIF1A can be exported by Imp13. Moreover, the 3.0‐Å structure of Imp13 in its unbound state reveals the existence of an open conformation in the cytoplasm that explains export cargo release and completes the export branch of the Imp13 pathway. Finally, we demonstrate that Imp13 is able to bind and export eIF1A in vivo and that its function is essential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号