首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   18篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1962年   2篇
  1961年   1篇
  1960年   1篇
排序方式: 共有80条查询结果,搜索用时 406 毫秒
41.
Certain platelet-derived growth factor (PDGF) isoforms are associated with proliferative vitreoretinopathy (PVR), a sight-threatening complication that develops in a subset of patients recovering from retinal reattachment surgery. Although these PDGF isoforms are abundant in the vitreous of patients and experimental animals with PVR, they make only a minor contribution to activating PDGF receptor α (PDGFRα) and driving experimental PVR. Rather, growth factors outside of the PDGF family are the primary (and indirect) agonists of PDGFRα. These observations beg the question of why vitreal PDGFs fail to activate PDGFRα. We report here that vitreous contains an inhibitor of PDGF-dependent activation of PDGFRα and that a major portion of this inhibitory activity is due to vascular endothelial cell growth factor A (VEGF-A). Furthermore, recombinant VEGF-A competitively blocks PDGF-dependent binding and activation of PDGFR, signaling events, and cellular responses. These findings unveil a previously unappreciated relationship between distant members of the PDGF/VEGF family that may contribute to pathogenesis of a blinding eye disease.  相似文献   
42.
Leucocyte zinc concentrations were measured in 70 mothers at the beginning of the third trimester of pregnancy and compared with the weight centiles of their subsequently delivered babies. The median maternal leucocyte zinc concentrations rose progressively with weight centile. Thus the median leucocyte zinc concentration of the mothers delivering babies weighing below the 10th centile was 112 nmol/10(9) leucocytes and that of the mothers with babies weighing above the 90th centile was 229.5 nmol/10(9) leucocytes. A maternal leucocyte zinc concentration less than 120 nmol/10(9) leucocytes strongly predicted a baby weighing below the 10th centile (positive predictive value = 71.9%, negative predictive value = 91.5%, sensitivity = 64.3%, specificity = 81.8%). These findings suggest that maternal zinc concentration might have a role in antenatal screening, but larger studies are required.  相似文献   
43.
44.
The multi-dynein hypothesis [Asai, 1995: Cell Motil Cytoskeleton 32:129-132] states: (1) there are many different dynein HC isoforms; (2) each isoform is encoded by a different gene; (3) different isoforms have different functions. Many studies provide evidence in support of the first two statements [Piperno et al., 1990: J Cell Biol 110:379-389; Kagami and Kamiya, 1992: J Cell Sci 103:653-664; Gibbons, 1995: Cell Motil Cytoskeleton 32:136-144; Porter et al., 1996: Genetics 144:569-585; Xu et al., 1999: J Eukaryot Microbiol 46:606-611] and there is evidence that outer arms and inner arms play different roles in flagellar beating [Brokaw and Kamiya, 1987: Cell Motil. Cytoskeleton 8:68-75]. However, there are few studies rigorously testing in vivo whether inner arm dyneins, especially the 1-headed inner arm dyneins, play unique roles. This study tested the third tenet of the multi-dynein hypothesis by introducing mutations into three inner arm dynein HC genes (DYH8, 9 and 12) that are thought to encode HCs associated with 1-headed inner arm dyneins. Southern blots, Northern blots, and RT-PCR analyses indicate that all three mutants (KO-8, 9, and 12) are complete knockouts. Each mutant swims slower than the wild-type cells. The beat frequency of KO-8 cells is lower than that of the wild-type cells while the beat frequencies of KO-9 and KO-12 are not different from that of wild-type cells. Our results suggest that each inner arm dynein HC is essential for normal cell motility and cannot be replaced functionally by other dynein HCs and that not all of the 1-headed inner arm dyneins play the same role in ciliary motility. Thus, the results of our study support the multi-dynein hypothesis [Asai, 1995: Cell Motil Cytoskeleton 32:129-132].  相似文献   
45.
In many organisms, depolarizing stimuli cause an increase in intraciliary Ca2+, which results in reversal of ciliary beat direction and backward swimming. The mechanism by which an increase in intraciliary Ca2+ causes ciliary reversal is not known. Here we show that Tetrahymena cells treated with okadaic acid or cantharidin to inhibit protein phosphatases do not swim backwards in response to depolarizing stimuli. We also show that both okadaic acid and cantharidin inhibit backward swimming in reactivated, extracted cell models treated with Ca2+. In contrast, treatment of whole cells or extracted cell models with protein kinase inhibitors has no effect on backward swimming. These results suggest that a component of the axonemal machinery is dephosphorylated during ciliary reversal. The phosphorylation state of inner arm dynein 1 (I1) was determined before and after cells were exposed to depolarizing conditions that induce ciliary reversal. An I1 intermediate chain is phosphorylated in forward swimming cells but is dephosphorylated in cells treated with a depolarizing stimulus. Our results suggest that dephosphorylation of Tetrahymena inner arm dynein 1 may be an essential part of the mechanism of ciliary reversal in response to increased intraciliary Ca2+.  相似文献   
46.
Hedden  S. C.  Gido  K. B.  Hedden  C. K.  Pennock  C. A.  Duran  B. R.  Hines  B. A.  Gilbert  E. I.  McKinstry  M. C.  Durst  S. L.  Franssen  N. R. 《Biological invasions》2022,24(8):2351-2364
Biological Invasions - Nonnative species are often perceived to cause the decline or impede management and recovery of native species, yet the ability to quantify the ecological impacts of...  相似文献   
47.
Nineteen mutants that are conditional for both the ability to regain motility following deciliation and the ability to grow were isolated. The mutations causing slow growth were placed into five complementation groups. None of the mutations appears to affect energy production as all mutants remained motile at the restrictive temperature. In three complementation groups protein synthesis and the levels of mRNA encoding alpha-tubulin or actin were largely unaffected at the restrictive temperature, consistent with the hypothesis that mutations in these three groups directly affect the assembly of functional cilia and growth. Complementation group 1 was chosen for further characterization. Both phenotypes were shown to be linked, suggesting they are caused by a single mutation. Group 1 mutants regenerated cilia at the restrictive temperature, but the cilia were nonmotile. This mutation also caused a block in cytokinesis at the restrictive temperature but did not affect nuclear divisions or DNA synthesis. The block in cell division was transiently rescued by wild-type cytoplasm exchanged when mutants were paired with wild-type cells during conjugation (round 1 of genomic exclusion). Thus, at least one mutation has been isolated that affects assembly of some microtubule-based structures in Tetrahymena (cilia during regeneration) but not others (nuclei divide at 38 degrees), and the product of this gene is likely to play a role in both ciliary function and in cytokinesis.  相似文献   
48.
Inclusive fitness theory predicts that natural selection will favour altruist genes that are more accurate in targeting altruism only to copies of themselves. In this paper, we provide evidence from digital evolution in support of this prediction by competing multiple altruist-targeting mechanisms that vary in their accuracy in determining whether a potential target for altruism carries a copy of the altruist gene. We compete altruism-targeting mechanisms based on (i) kinship (kin targeting), (ii) genetic similarity at a level greater than that expected of kin (similarity targeting), and (iii) perfect knowledge of the presence of an altruist gene (green beard targeting). Natural selection always favoured the most accurate targeting mechanism available. Our investigations also revealed that evolution did not increase the altruism level when all green beard altruists used the same phenotypic marker. The green beard altruism levels stably increased only when mutations that changed the altruism level also changed the marker (e.g. beard colour), such that beard colour reliably indicated the altruism level. For kin- and similarity-targeting mechanisms, we found that evolution was able to stably adjust altruism levels. Our results confirm that natural selection favours altruist genes that are increasingly accurate in targeting altruism to only their copies. Our work also emphasizes that the concept of targeting accuracy must include both the presence of an altruist gene and the level of altruism it produces.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号