首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   18篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1962年   2篇
  1961年   1篇
  1960年   1篇
排序方式: 共有80条查询结果,搜索用时 500 毫秒
21.
A temperature-sensitive mutation was isolated that blocks cilia regeneration and arrests growth in Tetrahymena thermophila. Protein and RNA synthesis and ATP production appeared to be largely unaffected at the restrictive temperature, suggesting that the mutation is specific for cilia regeneration and growth. At the restrictive temperature, mutant cells arrested at a specific point in the cell cycle, after macronuclear S phase and shortly before micronuclear mitosis. Arrested cells did not undergo nuclear divisions, DNA replication, or cytokinesis, so the mutation appears to cause true cell cycle arrest. Surprisingly, the mutation does not appear to affect micronuclear mitosis directly but rather some event(s) prior to micronuclear mitosis that must be completed before cells can complete the cell cycle. The cell cycle arrest was transiently complemented by wild-type cytoplasm exchanged during conjugation with a wild-type cell. Each starved, wild-type cell apparently contained enough rescuing factor to support an average of six cell divisions. Thus, this mutation affects assembly and/or function of at least one but not all of the microtubule-based structures in T. thermophila.  相似文献   
22.
23.
The first recorded bloom of Karenia spp., resulting in brevetoxin in oysters, in the low salinity waters of the Northern Gulf of Mexico (NGOMEX) occurred in November 1996. It raised questions about the salinity tolerance of Karenia spp., previously considered unlikely to occur at salinities <24 psu, and the likelihood that the bloom would reoccur in the NGOMEX. Salinity was investigated as a factor controlling Karenia spp. abundance in the field, using data from the NGOMEX 1996 bloom and Florida coastal waters from 1954 to 2004, and growth and toxin production in cultures of Karenia brevis (Davis) G. Hansen and Moestrup. During the NGOMEX bloom, Karenia spp. occurred much more frequently at low salinities than in Florida coastal waters over the last 50 years. The data suggest that the NGOMEX bloom started on the NW Florida Shelf, an area with a higher frequency of Karenia spp. at low salinities than the rest of Florida, and was transported by an unusual westward surface current caused by Tropical Storm Josephine. The minimum salinity at which growth occurred in culture ranged between 17.5 and 20 psu, but the optimal salinity ranged between low values of 20 or 25 and high values of 37.5–45 psu, depending on the clone. The effect of salinity on toxin production in one clone of K. brevis was complex, but at all salinities brevetoxin levels were highest during the stationary growth phase, suggesting that aging, high density blooms may pose the greatest public health threat. The results demonstrate that Karenia spp. can be a public health threat in low salinity areas, but the risk in the NGOMEX is relatively low. No bloom has occurred since the 1996 event, which was probably associated with a special set of conditions: a bloom along the Florida Panhandle and a tropical storm with a track that set up a westward current.  相似文献   
24.
Although accumulated evidence supports the concept of endosomal signaling of receptor tyrosine kinases, most results are generated from studies of epidermal growth factor receptor (EGFR). It is not clear whether the concept of endosomal signaling could be generally applied to the other receptor tyrosine kinases. For example, platelet-derived growth factor receptor (PDGFR) is very similar to EGFR in terms of both signaling and trafficking; however, little is known about the endosomal signaling of PDGFR. In this research, we applied the same approaches from our recent studies regarding EGFR endosomal signaling to investigate the endosomal signaling of PDGFR. We showed in this communication that we are able to establish a system that allows the specific activation of endosome-associated PDGFR without the activation of the plasma membrane-associated PDGFR and without disrupting the overall endocytosis pathway. By using this system, we showed that endosomal activation of PDGFR recruits various signaling proteins including Grb2, SHC, phospholipase C-gamma1, and the p85alpha subunit of phosphatidylinositol 3-kinase into endosomes and forms signaling complexes with PDGFR. We also showed that endosomal PDGFR signaling is sufficient to activate the major signaling pathways implicated in cell proliferation and survival. Moreover, we demonstrate that endosomal PDGFR signaling is sufficient to generate physiological output including cell proliferation and cell survival.  相似文献   
25.
In spite of intensified efforts to understand cell signaling from endosomes, there is no direct evidence demonstrating that endosomal signaling is sufficient to activate signal transduction pathways and no evidence to demonstrate that endosomal signaling is able to produce a biological outcome. The lack of breakthrough is due in part to the lack of means to generate endosomal signals without plasma membrane signaling. In this paper, we report the establishment of a system to specifically activate epidermal growth factor (EGF) receptor (EGFR) when it endocytoses into endosomes. We treated cells with EGF in the presence of AG-1478, a specific EGFR tyrosine kinase inhibitor, and monensin, which blocks the recycling of EGFR. This treatment led to the internalization of nonactivated EGF-EGFR complexes into endosomes. The endosome-associated EGFR was then activated by removing AG-1478 and monensin. During this procedure we did not observe any surface EGFR phosphorylation. We also achieved specific activation of endosome-associated EGFR without using monensin. By using this system, we provided original evidence demonstrating that (i) the endosome can serve as a nucleation site for the formation of signaling complexes, (ii) endosomal EGFR signaling is sufficient to activate the major signaling pathways leading to cell proliferation and survival, and (iii) endosomal EGFR signaling is sufficient to suppress apoptosis induced by serum withdrawal.  相似文献   
26.
The N-terminal region of the gene encoding polyhedrin, the major occlusion protein of the insect baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV), has been fused to DNA encoding Escherichia coli beta-galactosidase. The fused gene was inserted into the AcNPV DNA genome by cotransfection of insect cells with recombinant plasmid DNA and wild-type AcNPV genomic DNA. Recombinant viruses were selected as blue plaques in the presence of a beta-galactosidase indicator, 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside. Studies of one such virus, L1GP-gal3, indicated that the synthesis of beta-galactosidase is temporally controlled beginning late (20 h) in infection after the release of infectious virus particles from the cell. By 48 h postinfection, a remarkably high level of expression is achieved. On the basis of these results, AcNPV should be a useful vector for the stable propagation and expression of passenger genes in a lepidopteran cell background. A generalized transplacement vector that facilitates the construction and selection of recombinant viruses carrying passenger genes under their own promoter control has also been developed.  相似文献   
27.
28.
Activation of bacterial virulence-associated type III secretion systems (T3SSs) requires direct contact between a bacterium and a eukaryotic cell. In Yersinia pestis, the cytosolic LcrG protein and a cytosolic YopN-TyeA complex function to block T3S in the presence of extracellular calcium and prior to contact with a eukaryotic cell. The mechanism by which the bacterium senses extracellular calcium and/or cell contact and transmits these signals to the cytosolic compartment is unknown. We report here that YscF, a small protein that polymerizes to form the external needle of the T3SS, is essential for the calcium-dependent regulation of T3S. Alanine-scanning mutagenesis was used to identify YscF mutants that secrete virulence proteins in the presence and absence of calcium and prior to contact with a eukaryotic cell. Interestingly, one of the YscF mutants that exhibited constitutive T3S was unable to translocate secreted proteins across the eukaryotic plasma membrane. These data indicate that the YscF needle is a multifunctional structure that participates in virulence protein secretion, in translocation of virulence proteins across eukaryotic membranes and in the cell contact- and calcium-dependent regulation of T3S.  相似文献   
29.
Calcium-dependent ciliary reversals are seen in ciliated protozoans such as Tetrahymena in response to depolarizing stimuli, but the axonemal mechanisms responsible for this response are not well understood. The model is that the outer arm dyneins (OADs) control the beating frequency while the inner arm dyneins (IADs) regulate ciliary waveform. Since ciliary reversal is a type of waveform change, the model would predict that IAD mutations could affect ciliary reversal. We have used gene disruption techniques to generate several behavioral mutants of Tetrahymena with functional disruptions of various IADs. One such mutant, called KO-6, is missing I1 (the two-headed IAD) and is unable to show ciliary reversals in response to any stimuli due to a loss of axonemal Ca2+ sensitivity [Eur J Cell Biol 80 (2001) 486-497; Cell Motil Cytoskeleton 53 (2002) 281-288.]. In contrast, disruption of 3 one-headed IADs [Liu et al., Cell Motil Cytoskeleton 59 (2004), 201-214] produced mutants, which showed over-responsiveness in bioassays measuring either their depolarization-induced avoiding reactions (AR) in Na+ and Ba2+ solutions or their duration of backward swimming (continuous ciliary reversal or CCR) in K+ solutions. Detergent-extracted and reactivated mutants also showed increased probabilities of CCR at lower Ca2+ concentrations suggesting that the behavioral over-responsiveness of these three mutants in vivo is due to increased axonemal Ca2+ sensitivity. Our data suggest the possibility that the one-headed IADs and the two-headed IAD act antagonistically in vivo and that loss of any one of the one-headed IADs leads to behavioral over-responsiveness due to less resistance to I1-induced reversals.  相似文献   
30.
Mycoplasma arthritidis mitogen (MAM) is a superantigen (SAg) from M. arthritidis, an agent of murine toxic shock syndrome and arthritis. We previously demonstrated that C3H/HeJ and C3H/HeSnJ mice that differ in expression of TLR4 differed in immune reactivity to MAM. We show here that MAM directly interacts with TLR2 and TLR4 by using monoclonal antibodies to TLR2 and TLR4 which inhibit cytokine responses of THP-1 cells to MAM. Also, using macrophages from C3H substrains and TLR2-deficient mice, we confirmed that both TLR2 and TLR4 are used by MAM. Levels of IL-6 in supernatants of MAM-challenged macrophages were higher in mice which expressed only TLR2, lesser with both TLR2 and TLR4, and absent in mice lacking both TLR2 and TLR4. In addition, expression of TLR2 and TLR4 was moderately upregulated in wild-type cells but cells lacking TLR4 showed a fivefold increase in TLR2 expression. Further, blockade of TLR4 on macrophages of C3H/HeN mice with antibody greatly increased expression of TLR2 and release of IL-12p40 in response to MAM. These results indicate that the SAg, MAM, interacts with both TLR2 and TLR4 and that TLR4 signalling might downregulate the MAM/TLR2 inflammatory response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号