首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   22篇
  国内免费   43篇
  2024年   2篇
  2023年   1篇
  2022年   4篇
  2021年   8篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   8篇
  2015年   7篇
  2014年   17篇
  2013年   16篇
  2012年   22篇
  2011年   22篇
  2010年   16篇
  2009年   18篇
  2008年   22篇
  2007年   14篇
  2006年   21篇
  2005年   10篇
  2004年   16篇
  2003年   9篇
  2002年   11篇
  2001年   10篇
  2000年   5篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   7篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
排序方式: 共有344条查询结果,搜索用时 187 毫秒
81.
鞘氨醇-1-磷酸(sphingosine-1 phosphate, S1P)是一种脂质信号分子,与细胞增殖、凋亡和迁移等有密切关系.本研究发现,S1P促进人脐带间充质干细胞(human umbilical cord mesenchymal stem cells, hUC-MSCs)增殖,但目前关于其作用信号通路及S1P对hUC-MSCs表面标记表达的影响尚不十分清楚.Real-time PCR检测hUC-MSCs中S1P受体mRNA表达情况,发现在hUC-MSCs中优势表达S1PR1 3,而S1PR4、S1PR5的表达很少.MTT法检测S1PR1/3拮抗剂VPC23019、S1PR2拮抗剂JTE013、S1PR3拮抗剂CAY10444、Gi蛋白抑制剂PTX和ERK抑制剂PD98059对S1P诱导hUC-MSCs增殖的影响.结果显示,VPC23019完全抑制S1P诱导的hUC MSCs增殖,JTE013对此没有明显影响,CAY10444部分抑制S1P诱导的hUC MSCs增殖,PTX、PD98059完全抑制S1P诱导hUC-MSCs增殖.进一步用Western印迹检测ERK1/2磷酸化水平揭示,S1P通过促进ERK1/2磷酸化进而促进hUC MSCs增殖.流式细胞术检测发现,S1P对hUC MSCs表面标记物(CD45、CD34、CD90、CD29、CD105、CD44、CD73、CD71)表达没有明显影响.本研究证明,S1P通过S1PR1/3、Gi偶联蛋白及ERK1/2信号通路促进hUC MSCs增殖,而对hUC MSCs表面标记物表达无明显影响.  相似文献   
82.
The Δ4-3-ketosteroid functionality is present in nearly all steroid hormones apart from estrogens. The first step in functionalization of the A-ring is mediated in humans by steroid 5α- or 5β-reductase. Finasteride is a mechanism-based inactivator of 5α-reductase type 2 with subnanomolar affinity and is widely used as a therapeutic for the treatment of benign prostatic hyperplasia. It is also used for androgen deprivation in hormone-de pend ent prostate carcinoma, and it has been examined as a chemopreventive agent in prostate cancer. The effect of finasteride on steroid 5β-reductase (AKR1D1) has not been previously reported. We show that finasteride competitively inhibits AKR1D1 with low micromolar affinity but does not act as a mechanism-based inactivator. The structure of the AKR1D1·NADP+·finasteride complex determined at 1.7 Å resolution shows that it is not possible for NADPH to reduce the Δ1-2-ene of finasteride because the cofactor and steroid are not proximal to each other. The C3-ketone of finasteride accepts hydrogen bonds from the catalytic residues Tyr-58 and Glu-120 in the active site of AKR1D1, providing an explanation for the competitive inhibition observed. This is the first reported structure of finasteride bound to an enzyme involved in steroid hormone metabolism.The Δ4-3-ketosteroid functionality is present in many important steroid hormones, e.g. testosterone, cortisone, and progesterone. An initial step in steroid hormone metabolism is the reduction of the Δ4-ene, which in humans is mediated by steroid 5α-reductases (SRD5A1, SRD5A2) or steroid 5β-reductase (AKR1D1)3 to yield the corresponding 5α- or 5β-dihydrosteroids, respectively (1, 2). The products of these reactions are not always inactive. 5α-Reductase is responsible for the conversion of testosterone to 5α-dihydrotestosterone (5α-DHT), which is the most potent natural ligand for the androgen receptor. By contrast, in addition to being involved in bile acid biosynthesis, 5β-reductase is responsible for generating 5β-pregnanes, which are natural ligands for the pregnane-X receptor (PXR) in the liver (3, 4). PXR is involved in the induction of CYP3A4, which is responsible for the metabolism of a large proportion of drugs (5, 6). Thus both 5α-reductase and 5β-reductase are involved in the formation of potent ligands for nuclear receptors.Finasteride is a selective 5α-reductase type 2 inhibitor that reduces plasma 5α-dihydrotestosterone levels and shrinks the size of the prostate (7). It is a widely used therapeutic agent in the treatment of benign prostatic hyperplasia (8, 9), it is used in androgen deprivation therapy to treat prostate cancer (10), and it has been examined as a chemopreventive agent for hormone-dependent prostate cancer (11). Finasteride was originally thought to act as a competitive inhibitor with nanomolar affinity for 5α-reductase type 2 (12). More recently, it was found that finasteride acts as a mechanism-based inactivator of this enzyme (13). Subsequent to inhibitor binding, there is hydride transfer from the NADPH cofactor to the Δ1-2-ene double bond of finasteride. The intermediate enolate tautomerizes at the enzyme active site to form a bisubstrate analogue in which dihydrofinasteride is covalently bound to NADP+ (13). The bisubstrate analogue has subnanomolar affinity for 5α-reductase type 2 (Fig. 1). No structural information exists for 5α-reductase type 1 or type 2; therefore, it is not possible to determine how finasteride would bind to the active site of a human steroid double bond reductase in the absence of an experimentally determined crystal structure.Open in a separate windowFIGURE 1.Mechanism-based inactivation of 5α-reductase type 2 by finasteride. Adapted from Bull et al. (13). R = −C(=O)-NH2; PADPR = 2′-phosphoadenosine-5″-diphosphoribose.Human steroid 5β-reductase is a member of the aldo-keto reductase (AKR) superfamily and is formally designated (AKR1D1) (14). The AKRs are soluble NADP(H)-dependent oxidoreductases with monomeric molecular masses of 37 kDa. These enzymes are amenable to x-ray crystallography, and during the last year, we and others have reported crystal structures of ternary complexes of AKR1D1 (1517). The ternary complexes containing steroid substrates include: AKR1D1·NADP+·testosterone (PDB: 3BUR), AKR1D1·NADP+·progesterone (PDB: 3COT), AKR1D1·NADP+·cortisone (PDB: 3CMF), and AKR1D1·NADP+·Δ4-androstene-3,17-dione (PDB: 3CAS) (17). In addition, ternary complexes containing the products 5β-dihydroprogesterone (PDB: 3CAV) and 5β-dihydrotestosterone (PDB: 3DOP) have also been described (16, 18).As part of an ongoing inhibitor screen of AKR1D1, we now report that finasteride acts as a competitive inhibitor with low micromolar affinity. Additionally, we report the x-ray crystal structure of the AKR1D1·NADP+·finasteride complex.  相似文献   
83.
流式细胞术研究细胞凋亡的方法与技术   总被引:1,自引:0,他引:1  
细胞发生凋亡时,会伴随着一系列形态学、生物化学及分子生物学性质的变化,包括细胞皱缩,核染色质凝聚,细胞膜通透性改变,Caspases激活,线粒体跨膜电位降低,膜磷酯酰丝氨酸外化,胞质Ca2+浓度升高,DNA片段化及含量变化等特点.应用流式细胞术进行细胞凋亡的研究,对于探讨胚胎发育、衰老以及研究肿瘤的发生、发展和转化等病理生理过程和病毒感染及免疫等具有十分重要的意义.本文就细胞凋亡的特征、基于细胞膜功能的流式细胞术检测方法和基于细胞器功能的流式细胞术检测方法等关键性问题进行了阐述.  相似文献   
84.
圆瓣姜花根茎挥发油的化学成分   总被引:1,自引:0,他引:1  
利用水蒸汽蒸馏法提取圆瓣姜花根茎挥发油,运用毛细管气相色谱-质谱联用法对挥发油进行了分析,分离出60个峰,鉴定了其中的51种成分,所鉴定成分占挥发油总量的97.32%,其主要化学成分为单萜及倍半萜类化合物。  相似文献   
85.
大鼠子宫内膜异位模型的建立与组织学观察   总被引:8,自引:1,他引:7  
目的为开发诊治子宫内膜异位症(endometriosis,EMT)的新药研究提供理想的动物模型。方法取雌性未交配性成熟大鼠,术前雌激素诱导,麻醉开腹取部份右侧子宫,将内膜种植于左腹壁内,术后16周取出包块,进行组织形态学、组织化学观察。结果异位内膜在腹壁内生长,呈隆起囊状小包块,内有黏液,具有正常子宫内膜基本组织结构,囊腔较大。异位内膜中有糖原、RNA的存在。结论该手术方法建立的子宫异位内膜生长良好,术后一周就可摸及包块大小,为开发研究子宫内膜异位症的新药提供了方便。  相似文献   
86.
Cerebral 3α-hydroxysteroid dehydrogenase (3α-HSD) activity was suggested to be responsible for the local directed formation of neuroactive 5α,3α-tetrahydrosteroids (5α,3α-THSs) from 5α-dihydrosteroids. We show for the first time that within human brain tissue 5α-dihydroprogesterone and 5α-dihydrotestosterone are converted via non-stereo-selective 3-ketosteroid reductase activity to produce the respective 5α,3α-THSs and 5α,3β-THSs. Apart from this, we prove that within the human temporal lobe and limbic system cytochrome P450c17 and 3β-HSD/Δ5–4 ketosteroid isomerase are not expressed. Thus, it appears that these brain regions are unable to conduct de novo biosynthesis of Δ4-3-ketosteroids from Δ5-3β-hydroxysteroids. Consequently, the local formation of THSs will depend on the uptake of circulating Δ4-3-ketosteroids such as progesterone and testosterone. 3α- and 3β-HSD activity were (i) equally enriched in the cytosol, (ii) showed equal distribution between cerebral neocortex and subcortical white matter without sex- or age-dependency, (iii) demonstrated a strong and significant positive correlation when comparing 46 different specimens and (iv) exhibited similar sensitivities to different inhibitors of enzyme activity. These findings led to the assumption that cerebral 3-ketosteroid reductase activity might be catalyzed by a single enzyme and is possibly attributed to the expression of a soluble AKR1C aldo-keto reductase. AKR1Cs are known to act as non-stereo-selective 3-ketosteroid reductases; low AKR1C mRNA expression was detected. However, the cerebral 3-ketosteroid reductase was clearly refractory to inhibition by AKR1C inhibitors indicating the expression of a currently unidentified enzyme. Its lack of stereo-selectivity is of physiological significance, since only 5α,3α-THSs enhance the effect of GABA on the GABAA receptor, whereas 5α,3β-THSs are antagonists.  相似文献   
87.
Aldo-keto reductase (AKR1C) isoforms can regulate ligand access to nuclear receptors by acting as hydroxysteroid dehydrogenases. The principles that govern steroid hormone binding and steroid turnover by these enzymes were analyzed using rat 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD, AKR1C9) as the protein model. Systematic alanine scanning mutagenesis was performed on the substrate-binding pocket as defined by the crystal structure of the 3alpha-HSD.NADP(+).testosterone ternary complex. T24, L54, F118, F129, T226, W227, N306, and Y310 were individually mutated to alanine, while catalytic residues Y55 and H117 were unaltered. The effects of these mutations on the ordered bi-bi mechanism were examined. No mutations changed the affinity for NADPH by more than 2-3-fold. Fluorescence titrations of the energy transfer band of the E.NADPH complex with competitive inhibitors testosterone and progesterone showed that the largest effect was a 23-fold decrease in the affinity for progesterone in the W227A mutant. By contrast, changes in the K(d) for testosterone were negligible. Examination of the k(cat)/K(m) data for these mutants indicated that, irrespective of steroid substrate, the bimolecular rate constant was more adversely affected when alanine replaced an aromatic hydrophobic residue. By far, the greatest effects were on k(cat) (decreases of more than 2 log units), suggesting that the rate-determining step was either altered or slowed significantly. Single- and multiple-turnover experiments for androsterone oxidation showed that while the wild-type enzyme demonstrated a k(lim) and burst kinetics consistent with slow product release, the W227A and F118A mutants eliminated this kinetic profile. Instead, single- and multiple-turnover experiments gave k(lim) and k(max) values identical with k(cat) values, respectively, indicating that chemistry was now rate-limiting overall. Thus, conserved residues within the steroid-binding pocket affect k(cat) more than K(d) by influencing the rate-determining step of steroid oxidation. These findings support the concept of enzyme catalysis in which the correct positioning of reactants is essential; otherwise, k(cat) will be limited by the chemical event.  相似文献   
88.
The effect of TGF-beta receptor binding peptides on smooth muscle cells   总被引:1,自引:0,他引:1  
TGF-beta1 is a potent regulator of vascular smooth muscle cell (VSMC) proliferation, migration, and extracellular matrix (ECM) synthesis. In this study, we selected two peptides, IM-1 and IM-2, that bind to the TGF-beta type II receptor (TGF-beta RII) using phage display. IM-1 and IM-2 bind to the TGF-beta RII, with a K(d) of 1 microM. Like TGF-beta, IM-1 induced VSMC chemotaxis and PAI-1 mRNA expression, as determined using Boyden chambers and real time quantitative PCR. In contrast, IM-2 had no effect on VSMC chemotaxis or PAI-1 induction. Induction of ECM synthesis, involving proteins such as osteopontin and alpha-smooth muscle actin, was determined by ELISA. Osteopontin expression was inhibited by both peptides, but TGF-beta-induced alpha-smooth muscle actin expression could only be inhibited by IM-1. In conclusion, IM-1 activity on VSMC is agonistic with TGF-beta, except for ECM synthesis, whereas the IM-2 peptide is antagonistic for some examined TGF-beta functions.  相似文献   
89.
Experiencing the New Genetics: Family and Kinship on the Medical Frontier. Kaja Finkler. Philadelphia: University of Pennsylvania Press, 2000. 296 pp.
Born and Bred: Idioms and New Reproductive Technologies in England. Jeanette Edwards. New York: Oxford University Press, 2000. 264 pp.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号