首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15642篇
  免费   1347篇
  国内免费   1913篇
  18902篇
  2024年   53篇
  2023年   287篇
  2022年   591篇
  2021年   911篇
  2020年   706篇
  2019年   815篇
  2018年   758篇
  2017年   555篇
  2016年   726篇
  2015年   1038篇
  2014年   1252篇
  2013年   1280篇
  2012年   1563篇
  2011年   1439篇
  2010年   907篇
  2009年   731篇
  2008年   813篇
  2007年   750篇
  2006年   609篇
  2005年   528篇
  2004年   386篇
  2003年   304篇
  2002年   280篇
  2001年   192篇
  2000年   180篇
  1999年   174篇
  1998年   121篇
  1997年   117篇
  1996年   117篇
  1995年   96篇
  1994年   90篇
  1993年   66篇
  1992年   85篇
  1991年   55篇
  1990年   57篇
  1989年   50篇
  1988年   35篇
  1987年   27篇
  1986年   28篇
  1985年   29篇
  1984年   15篇
  1983年   14篇
  1982年   13篇
  1981年   5篇
  1980年   4篇
  1979年   10篇
  1978年   4篇
  1976年   9篇
  1975年   8篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
182.
A cane molasses-based medium for the biomass production of biocontrol agent Rhodosporidium paludigenum was statistically optimized. Molasses concentration (after pretreatment), yeast extract, and initial pH were identified by the Plackett–Burman design to show significant influence on the biomass production. The three factors were further optimized by central composite design and response-surface methodology. The statistical analysis indicated the optimum values of the variables were 89.98 g/L for cane molasses, 2.35 g/L for yeast extract and an initial pH of 8.48. The biomass yield at the optimal culture achieved 15.89 g/L in flask fermentation, which was 2.1 times higher than that at the initial NYDB medium. In a 10-L fermenter, 18.97 g/L of biomass was obtained after 36 hr of cultivation. Moreover, the biocontrol efficacy of the yeast was investigated after culture optimization. The results showed the yeast harvested in the optimal medium maintained its initial biocontrol properties by reducing the percentage of decayed apples to below 20%.  相似文献   
183.
This study was conducted to evaluate the relationship between the flora and the changes in the microbial communities during tomato paste wastewater treatment. The bio-analytical techniques like Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), adenosine-triphosphate (ATP) analysis, and testing of mixed liquid and suspended solids (MLSS) were simultaneously conducted to analyze the dynamics of the microbial communities during tomato paste wastewater treatment process. The study suggests that the combined approaches of PCR-DGGE, ATP, and MLSS provided a simple and accurate method to evaluate the changes in microbial activity, microbial structure, and population size with the shift in contaminants in different treatment processes. The study also demonstrates that the structure and quantity of a microbial community are influenced by MLSS during the wastewater treatment process, which consequently determines the overall functionality of the system.  相似文献   
184.

The attempted synthesis of a ring-expanded guanosine (1) containing the imidazo[4,5-e][1,3]diazepine ring system by condensation of 1-(2′-deoxy-β-D-erythropentofuranosyl)-4-ethoxycarbonylimidazole-5-carbaldehyde (2) with guanidine resulted in the formation of an unexpected product, 1-(2′-deoxy-β-D-erythropentofuranosyl)-5-(2,4-diamino-3,6-dihydro-1,3,5-triazin-6-yl)imidazole-4-carboxamide (7). The structure as well as the pathway of formation of 7 was corroborated by isolation of the intermediate, followed by its conversion to the product. Nucleoside 7 showed promising in vitro anti-helicase activity against the West Nile virus NTPase/ helicase with an IC 50 of 3-10 μg/mL.  相似文献   
185.
Congenital malformations may occur during early embryogenesis in cases of genetic abnormalities or various environmental factors. Affected subjects most often have only one or 2 abnormalities; subjects rarely have several unrelated congenital defects. Here we describe a case of a stillborn New Zealand white rabbit with multiple complex congenital malformations, including synophthalmia, holoprosencephaly, gastroschisis, and a supernumerary hindlimb, among other anomalies. There was no historical exposure to teratogens or other known environmental causes. Although not confirmed, this case was most likely a rare spontaneous genetic event.Congenital malformations occur when there is derangement of the embryologic developmental process. Neural development and organogenesis is a critical time of development that occurs during early embryogenesis.2,37 Congenital malformations that manifest at this stage of development may occur in association with various genetic abnormalities, such as point mutations and chromosomal abnormalities.25,29 In addition, environmental factors, including maternal health status, nutritional deficiencies, and exposure to teratogenic drugs or chemicals, may play a role in the development of congenital malformations.12,25 However, in 65% to 75% of human cases, the cause is unknown, resulting from a complex set of events such as polygenic or multifactorial genetic disorders, spontaneous genetic errors, and synergistic interactions of teratogens.3,25 Approximately 78% of human cases demonstrate only a single developmental malformation, with cardiovascular defects accounting for approximately 30% to 35% of organ defects. Cases of more than 2 or 3 malformations in a single person are extremely rare.28Here we describe a New Zealand white rabbit that was stillborn with numerous complex developmental abnormalities, including synophthalmia, a supraoptic proboscis, holoprosencephaly with other associated craniofacial deformities, Chiari malformation type I, gastroschisis, a supernumerary hindlimb, a fused (horseshoe) kidney with a supernumerary kidney, and male pseudohermaphroditism.  相似文献   
186.
Summary

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), superoxide anion (O2?), and hydroxyl radical (OH?) have been implicated in mediating various pathological events such as cancer, atherosclerosis, diabetes, ischemia, inflammatory diseases, and the aging process. The glutathione (GSH) redox cycle and antioxidant enzymes—superoxide dismutase (SOD) and catalase (CAT)—play an important role in scavenging ROS and preventing cell injury. Pycnogenol has been shown to protect endothelial cells against oxidant-induced injury. The present study determined the effects of pycnogenol on cellular metabolism of H2O2 and O2? and on glutathione-dependent and -independent antioxidant enzymes in bovine pulmonary artery endothelial cells (PAEC). Confluent monolayers of PAEC were incubated with pycnogenol, and oxidative stress was triggered by hypoxanthine and xanthine oxidase or H2O2. Pycnogenol caused a concentration-dependent enhancement of H2O2 and O2? clearance. It increased the intracellular GSH content and the activities of GSH peroxidase and GSH disulfide reductase. It also increased the activities of SOD and CAT. The results suggest that pycnogenol promotes a protective antioxidant state by upregulating important enzymatic and nonenzymatic oxidant scavenging systems.  相似文献   
187.
188.
Plants are subject to attack by a wide range of phytopathogens. Current pathogen detection methods and technologies are largely constrained to those occurring post‐symptomatically. Recent efforts were made to generate plant sentinels (phytosensors) that can be used for sensing and reporting pathogen contamination in crops. Engineered phytosensors indicating the presence of plant pathogens as early‐warning sentinels potentially have tremendous utility as wide‐area detectors. We previously showed that synthetic promoters containing pathogen and/or defence signalling inducible cis‐acting regulatory elements (RE) fused to a fluorescent protein (FP) reporter could detect phytopathogenic bacteria in a transient phytosensing system. Here, we further advanced this phytosensing system by developing stable transgenic tobacco and Arabidopsis plants containing candidate constructs. The inducibility of each synthetic promoter was examined in response to biotic (bacterial pathogens) or chemical (plant signal molecules salicylic acid, ethylene and methyl jasmonate) treatments using stably transgenic plants. The treated plants were visualized using epifluorescence microscopy and quantified using spectrofluorometry for FP synthesis upon induction. Time‐course analyses of FP synthesis showed that both transgenic tobacco and Arabidopsis plants were capable to respond in predictable ways to pathogen and chemical treatments. These results provide insights into the potential applications of transgenic plants as phytosensors and the implementation of emerging technologies for monitoring plant disease outbreaks in agricultural fields.  相似文献   
189.
Background aimsWe have previously described a xeno-free scalable system to generate transplantable dopaminergic neurons from human pluripotent stem cells. However, several important questions remain to be answered about our cell therapy efforts. These include determining the exact time at which cells should be transplanted and whether cells at this stage can be frozen, shipped, thawed and injected without compromising their ability to mature and survive the transplantation procedure. We also needed to determine whether further optimization of the culture process could shorten the development time and reduce variability and whether a current Good Manufacture Practice (CGMP) facility could manufacture cells with fidelity.MethodsWe developed an optimized protocol that included modulating the sonic hedgehog homolog gradient with bone morphogenetic proteins (BMP2) and addition of activin to the culture medium, which shortened the time to generate Lmx1A and FoxA2 immunoreactive cells by 4–6 days.ResultsWe showed that cells at this stage could be safely frozen and thawed while retaining an excellent ability to continue to mature in vitro and survive transplant in vivo. Importantly, we successfully adapted this process to a CGMP facility and manufactured two lots of transplant-ready dopaminergic neurons (>250 vials) under CGMP-compatible conditions. In vitro characterization, including viability/recovery on thawing, whole genome expression as well as expression of midbrain/dopaminergic markers, showed that the cells manufactured under GMP-compatible conditions were similar to cells produced at lab scale.ConclusionsOur results suggest that this optimized protocol can be used to generate dopaminergic neurons for Investigational New Drug enabling studies.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号