首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15653篇
  免费   1349篇
  国内免费   1904篇
  18906篇
  2024年   52篇
  2023年   281篇
  2022年   588篇
  2021年   905篇
  2020年   701篇
  2019年   813篇
  2018年   755篇
  2017年   555篇
  2016年   725篇
  2015年   1041篇
  2014年   1255篇
  2013年   1282篇
  2012年   1565篇
  2011年   1442篇
  2010年   911篇
  2009年   731篇
  2008年   810篇
  2007年   745篇
  2006年   610篇
  2005年   531篇
  2004年   385篇
  2003年   306篇
  2002年   280篇
  2001年   197篇
  2000年   180篇
  1999年   176篇
  1998年   123篇
  1997年   116篇
  1996年   120篇
  1995年   96篇
  1994年   89篇
  1993年   66篇
  1992年   85篇
  1991年   55篇
  1990年   57篇
  1989年   50篇
  1988年   35篇
  1987年   27篇
  1986年   28篇
  1985年   30篇
  1984年   15篇
  1983年   16篇
  1982年   13篇
  1981年   5篇
  1980年   5篇
  1979年   11篇
  1978年   4篇
  1977年   4篇
  1976年   9篇
  1975年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
53.
54.
The objectives of this study were to investigate the moisture-induced protein aggregation of whey protein powders and to elucidate the relationship of protein stability with respect to water content and glass transition. Three whey protein powder types were studied: whey protein isolate (WPI), whey protein hydrolysates (WPH), and beta-lactoglobulin (BLG). The water sorption isotherms were determined at 23 and 45°C, and they fit the Guggenheim–Andersson–DeBoer (GAB) model well. Glass transition was determined by differential scanning calorimeter (DSC). The heat capacity changes of WPI and BLG during glass transition were small (0.1 to 0.2 Jg−1 °C−1), and the glass transition temperature (T g) could not be detected for all samples. An increase in water content in the range of 7 to 16% caused a decrease in T g from 119 down to 75°C for WPI, and a decrease from 93 to 47°C for WPH. Protein aggregation after 2 weeks’ storage was measured by the increase in insoluble aggregates and change in soluble protein fractions. For WPI and BLG, no protein aggregation was observed over the range of 0 to 85% RH, whereas for WPH, ∼50% of proteins became insoluble after storage at 23°C and 85% RH or at 45°C and ≥73% RH, caused mainly by the formation of intermolecular disulfide bonds. This suggests that, at increased water content, a decrease in the T g of whey protein powders results in a dramatic increase in the mobility of protein molecules, leading to protein aggregation in short-term storage.  相似文献   
55.
Major depressive disorder (MDD) is a socially detrimental psychiatric disorder, contributing to increased healthcare expenditures and suicide rates. However, no empirical laboratory-based tests are available to support the diagnosis of MDD. In this study, a NMR-based plasma metabonomic method for the diagnosis of MDD was tested. Proton nuclear magnetic resonance ((1)H NMR) spectra of plasma sampled from first-episode drug-na??ve depressed patients (n = 58) and healthy controls (n = 42) were recorded and analyzed by orthogonal partial least-squares discriminant analysis (OPLS-DA). The OPLS-DA score plots of the spectra demonstrated that the depressed patient group was significantly distinguishable from the healthy control group. Moreover, the method accurately diagnosed blinded samples (n = 26) in an independent replication cohort with a sensitivity and specificity of 92.8% and 83.3%, respectively. Taken together, NMR-based plasma metabonomics may offer an accurate empirical laboratory-based method applicable to the diagnosis of MDD.  相似文献   
56.
57.
To determine whether genetic heterogeneity exists in patients with Graves'' disease (GD), the cytotoxic T-lymphocyte associated 4 (CTLA-4) gene, which is implicated a susceptibility gene for GD by considerable genetic and immunological evidence, was used for association analysis in a Chinese Han cohort recruited from various geographic regions. Our association study for the SNPs in the CTLA4 gene in 2640 GD patients and 2204 control subjects confirmed that CTLA4 is the susceptibility gene for GD in the Chinese Han population. Moreover, the logistic regression analysis in the combined Chinese Han cohort revealed that SNP rs231779 (allele frequencies p = 2.81×10−9, OR = 1.35, and genotype distributions p = 2.75×10−9, OR = 1.42) is likely the susceptibility variant for GD. Interestingly, the logistic regression analysis revealed that SNP rs35219727 may be the susceptibility variant to GD in the Shandong population; however, SNP, rs231779 in the CTLA4 gene probably independently confers GD susceptibility in the Xuzhou and southern China populations. These data suggest that the susceptibility variants of the CTLA4 gene varied between the different geographic populations with GD.  相似文献   
58.
This study examined emotional modulation of word processing, showing that the recognition potential (RP), an ERP index of word recognition, could be modulated by different emotional states. In the experiment, participants were instructed to compete with pseudo-competitors, and via manipulation of the outcome of this competition, they were situated in neutral, highly positive, slightly positive, highly negative or slightly negative emotional states. They were subsequently asked to judge whether the referent of a word following a series of meaningless character segmentations was an animal or not. The emotional induction task and the word recognition task were alternated. Results showed that 1) compared with the neutral emotion condition, the peak latency of the RP under different emotional states was earlier and its mean amplitude was smaller, 2) there was no significant difference between RPs elicited under positive and negative emotional states in either the mean amplitude or latency, and 3) the RP was not affected by different degrees of positive emotional states. However, compared to slightly negative emotional states, the mean amplitude of the RP was smaller and its latency was shorter in highly negative emotional states over the left hemisphere but not over the right hemisphere. The results suggest that emotional states influence word processing.  相似文献   
59.
5-methylcytosine (5-mC) constitutes ~2-8% of the total cytosines in human genomic DNA and impacts a broad range of biological functions, including gene expression, maintenance of genome integrity, parental imprinting, X-chromosome inactivation, regulation of development, aging, and cancer1. Recently, the presence of an oxidized 5-mC, 5-hydroxymethylcytosine (5-hmC), was discovered in mammalian cells, in particular in embryonic stem (ES) cells and neuronal cells2-4. 5-hmC is generated by oxidation of 5-mC catalyzed by TET family iron (II)/α-ketoglutarate-dependent dioxygenases2, 3. 5-hmC is proposed to be involved in the maintenance of embryonic stem (mES) cell, normal hematopoiesis and malignancies, and zygote development2, 5-10. To better understand the function of 5-hmC, a reliable and straightforward sequencing system is essential. Traditional bisulfite sequencing cannot distinguish 5-hmC from 5-mC11. To unravel the biology of 5-hmC, we have developed a highly efficient and selective chemical approach to label and capture 5-hmC, taking advantage of a bacteriophage enzyme that adds a glucose moiety to 5-hmC specifically12.Here we describe a straightforward two-step procedure for selective chemical labeling of 5-hmC. In the first labeling step, 5-hmC in genomic DNA is labeled with a 6-azide-glucose catalyzed by β-GT, a glucosyltransferase from T4 bacteriophage, in a way that transfers the 6-azide-glucose to 5-hmC from the modified cofactor, UDP-6-N3-Glc (6-N3UDPG). In the second step, biotinylation, a disulfide biotin linker is attached to the azide group by click chemistry. Both steps are highly specific and efficient, leading to complete labeling regardless of the abundance of 5-hmC in genomic regions and giving extremely low background. Following biotinylation of 5-hmC, the 5-hmC-containing DNA fragments are then selectively captured using streptavidin beads in a density-independent manner. The resulting 5-hmC-enriched DNA fragments could be used for downstream analyses, including next-generation sequencing.Our selective labeling and capture protocol confers high sensitivity, applicable to any source of genomic DNA with variable/diverse 5-hmC abundances. Although the main purpose of this protocol is its downstream application (i.e., next-generation sequencing to map out the 5-hmC distribution in genome), it is compatible with single-molecule, real-time SMRT (DNA) sequencing, which is capable of delivering single-base resolution sequencing of 5-hmC.  相似文献   
60.
We are developing tablet dosage forms for implantation directly into the subconjunctival space of the eye. The matrix metalloproteinase inhibitor, ilomastat, has previously been shown to be efficacious at suppressing scarring following glaucoma filtration surgery (GFS). We report on the physical characterisation of ilomastat which is being developed for ocular implantation. Since ilomastat is being considered for implantation it is necessary to examine its polymorphs and their influence on aspects of the in vitro drug release profile. X-ray powder diffraction identified two polymorphs of ilomastat from different commercial batches of the compound. Tablets were prepared from the two different polymorphs. Isothermal perfusion calorimetry was used to show that amorphous content is not increased during tablet formulation. The melting points of the two polymorphs are 188 and 208°C as determined by differential scanning calorimetry. Utilising single crystal X-ray diffraction, the structural conformations and packing arrangements of the different polymorphs were determined. The orthorhombic crystal crystallised as a monohydrate while the second monoclinic crystal form is non-solvated. Ilomastat tablets prepared from the two different solid forms exhibited similar drug release profiles in vitro under conditions mimicking the aqueous composition, volume and flow of the subconjunctival space after GFS. This suggests that a reproducible dose at each time point during release after implantation should be achievable in vivo with ilomastat tablets prepared from the two polymorphs identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号