首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15720篇
  免费   1444篇
  国内免费   1909篇
  19073篇
  2024年   71篇
  2023年   303篇
  2022年   644篇
  2021年   928篇
  2020年   734篇
  2019年   826篇
  2018年   767篇
  2017年   563篇
  2016年   733篇
  2015年   1039篇
  2014年   1255篇
  2013年   1290篇
  2012年   1566篇
  2011年   1438篇
  2010年   907篇
  2009年   730篇
  2008年   810篇
  2007年   745篇
  2006年   605篇
  2005年   527篇
  2004年   387篇
  2003年   308篇
  2002年   280篇
  2001年   191篇
  2000年   183篇
  1999年   174篇
  1998年   120篇
  1997年   114篇
  1996年   117篇
  1995年   96篇
  1994年   89篇
  1993年   66篇
  1992年   85篇
  1991年   55篇
  1990年   57篇
  1989年   50篇
  1988年   35篇
  1987年   27篇
  1986年   28篇
  1985年   29篇
  1984年   15篇
  1983年   14篇
  1982年   13篇
  1981年   5篇
  1980年   4篇
  1979年   10篇
  1978年   4篇
  1976年   9篇
  1975年   8篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
Neospora caninum is an important veterinary pathogen that causes abortion in cattle and neuromuscular disease in dogs. Neospora has also generated substantial interest because it is an extremely close relative of the human pathogen Toxoplasma gondii, yet does not appear to infect humans. While for Toxoplasma there are a wide array of molecular tools and reagents available for experimental investigation, relatively few reagents exist for Neospora. To investigate the unique biological features of this parasite and exploit the recent sequencing of its genome, we have used an organelle isolation and monoclonal antibody approach to identify novel organellar proteins and develop a wide array of probes for subcellular localization. We raised a panel of forty-six monoclonal antibodies that detect proteins from the rhoptries, micronemes, dense granules, inner membrane complex, apicoplast, mitochondrion and parasite surface. A subset of the proteins was identified by immunoprecipitation and mass spectrometry and reveal that we have identified and localized many of the key proteins involved in invasion and host interaction in Neospora. In addition, we identified novel secretory proteins not previously studied in any apicomplexan parasite. Thus, this organellar monoclonal antibody approach not only greatly enhances the tools available for Neospora cell biology, but also identifies novel components of the unique biological characteristics of this important veterinary pathogen.  相似文献   
152.
153.
Inhibition of the excessive NO production has been recognized as a potential means for the treatment of rheumatoid arthritis (RA). In order to discover more potent inhibitors and explore the preliminary structure activity relationship, a series of unique stereodimers of sinomenine analogues were designed and synthesized. Their inhibitory activity on NO production and cytotoxicity were evaluated using LPS-activated murine macrophages RAW264.7 assay and MTT method, respectively. Among these compounds, 1a, 2, 2a, 2b, and 4 showed potent inhibitory activity on NO production without obvious cytotoxicity. Furthermore, 2, 2a, and 2b significantly suppressed mRNA expression of iNOS. Interestingly, (S)-dimers displayed a better bioactivity than (R)-dimers. These compounds may sever as lead candidates in the development of novel therapeutic drugs for RA treatment.  相似文献   
154.
Arginine is one of the commonly used additives to enhance refolding yield of proteins, to suppress aggregation of proteins, and to increase solubility of proteins, and yet the molecular interactions that contribute to the role of arginine are unclear. Here, we present experiments, using bovine serum albumin (BSA), lysozyme (LYZ), and β-lactoglobulin (BLG) as model proteins, to show that arginine can enhance heat-induced aggregation of concentrated protein solutions, contrary to the conventional belief that arginine is a universal suppressor of aggregation. Results show that the enhancement in aggregation is caused only for BSA and BLG, but not for LYZ, indicating that arginine's preferential interactions with certain residues over others could determine the effect of the additive on aggregation. We use this previously unrecognized behavior of arginine, in combination with density functional theory calculations, to identify the molecular-level interactions of arginine with various residues that determine arginine's role as an enhancer or suppressor of aggregation of proteins. The experimental and computational results suggest that the guanidinium group of arginine promotes aggregation through the hydrogen-bond-based bridging interactions with the acidic residues of a protein, whereas the binding of the guanidinium group to aromatic residues (aggregation-prone) contributes to the stability and solubilization of the proteins. The approach, we describe here, can be used to select suitable additives to stabilize a protein solution at high concentrations based on an analysis of the amino acid content of the protein.  相似文献   
155.
156.
Transgene flow to hybrid rice and its male-sterile lines   总被引:9,自引:0,他引:9  
Jia S  Wang F  Shi L  Yuan Q  Liu W  Liao Y  Li S  Jin W  Peng H 《Transgenic research》2007,16(4):491-501
Gene flow from genetically modified (GM) crops to the same species or wild relatives is a major concern in risk assessment. Transgenic rice with insect and/or disease resistance, herbicide, salt and/or drought tolerance and improved quality has been successfully developed. However, data on rice gene flow from environmental risk assessment studies are currently insufficient for the large-scale commercialization of GM rice. We have provided data on the gene flow frequency at 17 distances between a GM japonica line containing the bar gene as a pollen donor and two indica hybrid rice varieties and four male-sterile (ms) lines. The GM line was planted in a 640m2 in an isolated experimental plot (2.4 ha), which simulates actual conditions of rice production with pollen competition. Results showed that: (1) under parallel plantation at the 0-m zone, the transgene flow frequency to the ms lines ranged from 3.145 to 36.116% and was significantly higher than that to hybrid rice cultivars (0.037–0.045%). (2) Gene flow frequency decreased as the distance increased, with a sharp cutoff point at about 1–2 m; (3) The maximum distance of transgene flow was 30–40 m to rice cultivars and 40–150 m to ms lines. We believe that these data will be useful for the risk assessment and management of transgenic rice lines, especially in Asia where 90% of world's rice is produced and hybrid rice varieties are extensively used. Shirong Jia, Feng Wang and Lei Shi contributed equally to this investigation.  相似文献   
157.
158.
Applying allometric equations in combination with forest inventory data is an effective approach to use when qualifying forest biomass and carbon storage on a regional scale. The objectives of this study were to (1) develop general allometric tree component biomass equations and (2) investigate tree biomass allocation patterns for Pinus massoniana, a principal tree species native to southern China, by applying 197 samples across 20 site locations. The additive allometric equations utilized to compute stem, branch, needle, root, aboveground, and total tree biomass were developed by nonlinear seemingly unrelated regression. Results show that the relative proportion of stem biomass to tree biomass increased while the contribution of canopy biomass to tree biomass decreased as trees continued to grow through time. Total root biomass was a large biomass pool in itself, and its relative proportion to tree biomass exhibited a slight increase with tree growth. Although equations employing stem diameter at breast height (dbh) alone as a predictor could accurately predict stem, aboveground, root, and total tree biomass, they were poorly fitted to predict the canopy biomass component. The inclusion of the tree height (H) variable either slightly improved or did not in any way increase model fitness. Validation results demonstrate that these equations are suitable to estimate stem, aboveground, and total tree biomass across a broad range of P. massoniana stands on a regional scale.  相似文献   
159.
Yang Z  Peng Z  Wei S  Yu Y  Cai P 《Gene》2011,485(2):81-84
The common wheat line three-pistil (TP) is a valuable mutant for wheat breeding. The TP mutation has normal spike morphology; however, it only produces three pistils per floret. Therefore, it has potential to increase the grain number per spike. In order to determine the underlying molecular mechanism, an annealing control primer system was used to identify the different expressed genes in three-pistil mutation. Using 120 arbitrary ACP primers, we identified three differentially expressed genes in young spikes between two near-isogenic lines (i.e., Chuanmai 28 TP and Chinese Spring TP) and their recurrent parents. We tentatively designated the three differentially expressed genes as DETP-1, DETP-2, and DETP-3. DETP-1 showed similar function with maize cytoplasmic membrane protein, which is involved in cell division in bacteria. DETP-3 is homologous to maize endo-1, 4-beta-glucanase (EGases), which is associated with plant development, cell wall loosening, stem flowering, and root expansion. DETP-2 showed no significant hit with any sequence found in the database and translates unknown protein. These genes would likely play an important role in determining the three pistils trait in wheat.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号