首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   5篇
  40篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1969年   1篇
  1961年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
21.
CYP102A5 variant (ADL27534) from isolated Bacillus cereus CYPPB-1 was heterologously expressed in Escherichia coli Top 10 cells. Comparative sequence analysis of purified CYP102A5 variant with respect to reported CYP102A5 (AAP10153) from Bacillus cereus ATCC 14579 revealed amino acid sequence changes at positions P245S and M318I of heme domain. The binding affinities of 15 selected human P450 probe substrates towards isolated CYP102A5 were analyzed in silico using a homology model together with molecular docking techniques to predict the human drug metabolism. In vitro analysis suggested that the purified CYP102A5 metabolizes typical substrates of human CYP2C9, CYP2D6, CYP2E1, and CYP3A4, such as coumarin, propranolol, aniline, chlorzoxazone, p-nitrophenol, and nifedipine. The calculated K M values for propranolol, chloroxazone, coumarin, aniline, and 4-nitrophenol were calculated to be 0.962?±?0.041, 1.254?±?0.057, 2.859?±?0.083, 2.732?±?0.106, and 2.528?±?0.11 mM, respectively. Importantly, taking a ChemScore cutoff value of ?31 kJ/mol, substrate binding at active site and in vitro activity as the distinguishing lines between “substrates” and “nonsubstrates” revealed one false-positive and one false-negative results out of the 15 compounds examined. This is the first report on validation of CYP102A family homology model for in silico prediction of human drug metabolism.  相似文献   
22.
23.
Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b(-/-) mice at different stages of disease, a longitudinal metal analysis, and characterization of copper-binding molecules, we show that urinary copper elevation is a specific regulatory process mediated by distinct molecules. PET-CT and atomic absorption spectroscopy directly demonstrate an age-dependent decrease in the capacity of Atp7b(-/-) livers to accumulate copper, concomitant with an increase in urinary copper. This reciprocal relationship is specific for copper, indicating that cell necrosis is not the primary cause for the initial phase of metal elevation in the urine. Instead, the urinary copper increase is associated with the down-regulation of the copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper Carrier, SCC, in the urine. SCC is also elevated in the urine of the liver-specific Ctr1(-/-) knockouts, which have normal ATP7B function, suggesting that SCC is a normal metabolite carrying copper in the serum. In agreement with this hypothesis, partially purified SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper via kidney when liver function is impaired. These results demonstrate that the body regulates copper export through more than one mechanism; better understanding of urinary copper excretion may contribute to an improved diagnosis and monitoring of WD.  相似文献   
24.
Methamphetamine (METH) abuse in conjunction with human immunodeficiency virus (HIV) exacerbates neuropathogenesis and accelerates neurocognitive impairments in the central nervous system (CNS), collectively termed HIV Associated Neurocognitive Disorders (HAND). Since both HIV and METH have been implicated in altering the synaptic architecture, this study focused on investigating alterations in synaptic proteins. Employing a quantitative proteomics approach on synaptosomes isolated from the caudate nucleus from two groups of rhesus monkeys chronically infected with simian immunodeficiency virus (SIV) differing by one regimen, METH treatment, we identified the neuron specific Na(+)/K(+)-ATPase alpha 1 isoform 3 (ATP1A3) to be up regulated after METH treatment, and validated its up regulation by METH in vitro. Further studies on signaling mechanisms revealed that the activation of ATP1A3 involves the extracellular regulated kinase (ERK) pathway. Given its function in maintaining ionic gradients and emerging role as a signaling molecule, changes in ATP1A3 yields insights into the mechanisms associated with HAND and interactions with drugs of abuse.  相似文献   
25.
Abstract

The synthesis of 5-β-D-ribofuranosylselenophene-3-carboxamide (selenophenfurin) is reported. Selenophenfurin was found active as cytotoxic agent and as inosine monophosphate dehydrogenase inhibitor.  相似文献   
26.
The signaling pathways by which sphingosine 1-phosphate (S1P) potently stimulates endothelial cell migration and angiogenesis are not yet fully defined. We, therefore, investigated the role of protein kinase C (PKC) isoforms, phospholipase D (PLD), and Rac in S1P-induced migration of human pulmonary artery endothelial cells (HPAECs). S1P-induced migration was sensitive to S1P(1) small interfering RNA (siRNA) and pertussis toxin, demonstrating coupling of S1P(1) to G(i). Overexpression of dominant negative (dn) PKC-epsilon or -zeta, but not PKC-alpha or -delta, blocked S1P-induced migration. Although S1P activated both PLD1 and PLD2, S1P-induced migration was attenuated by knocking down PLD2 or expressing dnPLD2 but not PLD1. Blocking PKC-epsilon, but not PKC-zeta, activity attenuated S1P-mediated PLD stimulation, demonstrating that PKC-epsilon, but not PKC-zeta, was upstream of PLD. Transfection of HPAECs with dnRac1 or Rac1 siRNA attenuated S1P-induced migration. Furthermore, transfection with PLD2 siRNA, infection of HPAECs with dnPKC-zeta, or treatment with myristoylated PKC-zeta peptide inhibitor abrogated S1P-induced Rac1 activation. These results establish that S1P signals through S1P(1) and G(i) to activate PKC-epsilon and, subsequently, a PLD2-PKC-zeta-Rac1 cascade. Activation of this pathway is necessary to stimulate the migration of lung endothelial cells, a key component of the angiogenic process.  相似文献   
27.
Although the actin cytoskeleton has been implicated in the control of NADPH oxidase in phagocytosis, very little is known about the cytoskeletal regulation of endothelial NADPH oxidase assembly and activation. Here, we report a role for cortactin and the tyrosine phosphorylation of cortactin in hyperoxia-induced NADPH oxidase activation and ROS production in human pulmonary artery ECs (HPAECs). Exposure of HPAECs to hyperoxia for 3 h induced NADPH oxidase activation, as demonstrated by enhanced superoxide production. Hyperoxia also caused a thickening of the subcortical dense peripheral F-actin band and increased the localization of cortactin in the cortical regions and lamellipodia at cell-cell borders that protruded under neighboring cells. Pretreatment of HPAECs with the actin-stabilizing agent phallacidin attenuated hyperoxia-induced cortical actin thickening and ROS production, whereas cytochalasin D and latrunculin A enhanced basal and hyperoxia-induced ROS formation. In HPAECs, a 3-h hyperoxic exposure enhanced the tyrosine phosphorylation of cortactin and interaction between cortactin and p47(phox), a subcomponent of the EC NADPH oxidase, when compared with normoxic cells. Furthermore, transfection of HPAECs with cortactin small interfering RNA or myristoylated cortactin Src homology domain 3 blocking peptide attenuated ROS production and the hyperoxia-induced translocation of p47(phox) to the cell periphery. Similarly, down-regulation of Src with Src small interfering RNA attenuated the hyperoxia-mediated phosphorylation of cortactin tyrosines and blocked the association of cortactin with actin and p47(phox). In addition, the hyperoxia-induced generation of ROS was significantly lower in ECs expressing a tyrosine-deficient mutant of cortactin than in vector control or wild-type cells. These data demonstrate a novel function for cortactin and actin in hyperoxia-induced activation of NADPH oxidase and ROS generation in human lung endothelial cells.  相似文献   
28.
29.
Comparison of various pretreatments such as mild alkali/acid treatments and pressure cooking of corncob to expose its lignin-saccharide complex has been carried out to enhance enzymatic hydrolysis of xylan to xylooligosaccharides (XOS). Scanning electron micrographs of lignin-saccharide complex of native and pretreated corncob powder showed that the complex was greatly altered during alkali pretreatment. Hydrolysis of alkali pretreated corncob powder using a commercial endoxylanase produced 81+/-1.5% of XOS in the hydrolyzate equivalent to 5.8+/-0.14 mg ml(-1) of XOS. Reaction parameters for the production of XOS from corncob using endoxylanase from Aspergillus oryzae MTCC 5154 were optimized and an XOS yield of 10.2+/-0.14 mg ml(-1) corresponding to 81+/-3.9% with 73.5% xylobiose was obtained. HPLC/RID and ESI/MS analysis of XOS mixture and purified fractions showed that XOS was a mixture of neutral oligosaccharides of DP, 2-7.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号