首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   15篇
  2022年   3篇
  2021年   5篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   6篇
  2012年   11篇
  2011年   9篇
  2010年   5篇
  2009年   3篇
  2008年   8篇
  2007年   8篇
  2006年   8篇
  2005年   6篇
  2004年   2篇
  2003年   5篇
  2002年   9篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1995年   1篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   3篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1968年   3篇
  1967年   4篇
  1966年   2篇
  1960年   1篇
  1958年   1篇
  1956年   1篇
  1954年   1篇
  1946年   1篇
排序方式: 共有180条查询结果,搜索用时 62 毫秒
101.
Genetic studies and differing population trends support the separation of Steller sea lions (Eumetopias jubatus) into a western distinct population segment (WDPS) and an eastern DPS (EDPS) with the dividing line between populations at 144° W. Despite little exchange for thousands of years, the gap between the breeding ranges narrowed during the past 15–30 years with the formation of new rookeries near the DPS boundary. We analyzed >22,000 sightings of 4,172 sea lions branded as pups in each DPS from 2000–2010 to estimate probabilities of a sea lion born in one DPS being seen within the range of the other DPS (either ‘West’ or ‘East’). Males from both populations regularly traveled across the DPS boundary; probabilities were highest at ages 2–5 and for males born in Prince William Sound and southern Southeast Alaska. The probability of WDPS females being in the East at age 5 was 0.067 but 0 for EDPS females which rarely traveled to the West. Prince William Sound-born females had high probabilities of being in the East during breeding and non-breeding seasons. We present strong evidence that WDPS females have permanently emigrated to the East, reproducing at two ‘mixing zone’ rookeries. We documented breeding bulls that traveled >6,500 km round trip from their natal rookery in southern Alaska to the northern Bering Sea and central Aleutian Islands and back within one year. WDPS animals began moving East in the 1990s, following steep population declines in the central Gulf of Alaska. Results of our study, and others documenting high survival and rapid population growth in northern Southeast Alaska suggest that conditions in this mixing zone region have been optimal for sea lions. It is unclear whether eastward movement across the DPS boundary is due to less-optimal conditions in the West or a reflection of favorable conditions in the East.  相似文献   
102.
103.
BackgroundGenetically modified organisms (GMOs) have numerous biomedical, agricultural and environmental applications. Development of accurate methods for the detection of GMOs is a prerequisite for the identification and control of authorized and unauthorized release of these engineered organisms into the environment and into the food chain. Current detection methods are unable to detect uncharacterized GMOs, since either the DNA sequence of the transgene or the amino acid sequence of the protein must be known for DNA-based or immunological-based detection, respectively.MethodsHere we describe the application of an epigenetics-based approach for the detection of mammalian GMOs via analysis of chromatin structural changes occurring in the host nucleus upon the insertion of foreign or endogenous DNA.ResultsImmunological methods combined with DNA next generation sequencing enabled direct interrogation of chromatin structure and identification of insertions of various size foreign (human or viral) DNA sequences, DNA sequences often used as genome modification tools (e.g. viral sequences, transposon elements), or endogenous DNA sequences into the nuclear genome of a model animal organism.ConclusionsThe results provide a proof-of-concept that epigenetic approaches can be used to detect the insertion of endogenous and exogenous sequences into the genome of higher organisms where the method of genetic modification, the sequence of inserted DNA, and the exact genomic insertion site(s) are unknown.General significanceMeasurement of chromatin dynamics as a sensor for detection of genomic manipulation and, more broadly, organism exposure to environmental or other factors affecting the epigenomic landscape are discussed.  相似文献   
104.
Recent results from our laboratory and others have suggested a possible physiological functional role(s) for leukotrienes in gastric mucosa. In the present study 3H-LTC4 binds to washed rabbit gastric mucosal membranes at 4 degrees C with a Kd of 5 nM and a Bmax of 31.3 pmol/mg protein. Leukotrienes D4, E4, B4, oxidized glutathione (GSSG), cysteine, and mercaptoethanol were unable to displace 3H-LTC4 at 1 microM concentrations, while GSH inhibited binding with a Ki of 47 nM. Differential centrifugation of the membrane preparation to remove mitochondria resulted in Ki values for LTC4 and GSH of 14 and 23 nM, respectively. The similar binding affinities and competitive receptor binding kinetics for GSH and LTC4, the low affinity for other leukotrienes, and a Ki of 7 microM for hematin, a substrate for glutathione S-transferase, suggest that 3H-LTC4 binds to a GSH site which does not discriminate between LTC4 and GSH. Membranes fractionated to remove mitochondria were assayed for glutathione peroxidase, gamma-glutamyltranspeptidase, and glutathione S-transferase as possible binding sites for LTC4. We were unable to detect enzyme activity for any of the three enzymes. The binding of LTC4 in gastric mucosa differs from other tissues with respect to the high affinity for GSH, and thus becomes an appropriate tissue in which to investigate the relationships between LTC4 and GSH.  相似文献   
105.
Nitrous oxide (N2O) emissions from grazed pastures are a product of microbial transformations of nitrogen and the prevailing view is that these only occur in the soil. Here we show this is not the case. We have found ammonia-oxidising bacteria (AOB) are present on plant leaves where they produce N2O just as in soil. AOB (Nitrosospira sp. predominantly) on the pasture grass Lolium perenne converted 0.02–0.42% (mean 0.12%) of the oxidised ammonia to N2O. As we have found AOB to be ubiquitous on grasses sampled from urine patches, we propose a ‘plant'' source of N2O may be a feature of grazed grassland.In terms of climate forcing, nitrous oxide (N2O) is the third most important greenhouse gas (Blunden and Arndt, 2013). Agriculture is the largest source of anthropogenic N2O (Reay et al., 2012) with about 20% of agricultural emissions coming from grassland grazed by animals (Oenema et al., 2005).Grazed grassland is a major source of N2O because grazers harvest nitrogen (N) from plants across a wide area but recycle it back onto the pasture, largely as urine, in patches of very high N concentration. The N in urine patches is often in excess of what can be used by plants resulting in losses through leaching as nitrate, as N2O and through volatilisation as ammonia (NH3) creating a high NH3 environment in the soil and plant canopy; an important point that we will return to later. The established wisdom is that N2O is generated exclusively by soil-based microbes such as ammonia-oxidising bacteria (AOB). This soil biology is represented in models designed to simulate N2O emissions and the soil is a target for mitigation strategies such as the use of nitrification inhibitors.We have previously shown that pasture plants can emit N2O largely through acting as a conduit for emissions generated in the soil, which are themselves controlled to some degree by the plant (Bowatte et al., 2014). In this case the origin of the emission is still the soil microbes. However, AOB have been found on the leaves of plants, for example, Norway spruce (Papen et al., 2002; Teuber et al., 2007) and weeds in rice paddies (Bowatte et al., 2006), prompting us to ask whether AOB might be present on the leaves of pasture species and contribute to N2O emissions as they do in soil.We looked for AOB on plants in situations where NH3 concentrations were likely to be high, choosing plants from urine patches in grazed pastures and plants from pastures surrounding a urea fertiliser manufacturing plant. DNA was extracted from the leaves (including both the surface and apoplast) and the presence of AOB tested using PCR. AOB were present in all the species we examined—the grasses Lolium perenne, Dactylis glomerata, Anthoxanthum odoratum, Poa pratensis, Bromus wildenowii and legumes Trifolium repens and T. subterraneum.To measure whether leaf AOB produce N2O, we used intact plants of ryegrass (L. perenne) lifted as cores from a paddock that had been recently grazed by adult sheep. The cores were installed in a chamber system designed to allow sampling of above- and belowground environments separately (Bowatte et al., 2014). N2O emissions were measured from untreated (control) plants and from plants where NH3 was added to the aboveground chamber and leaves were either untreated or sterilised by wiping twice with paper towels soaked in 1% hypoclorite (Sturz et al., 1997) and then with sterile water. We tested for the presence and abundance of AOB on the leaves by extracting DNA and using PCR and real-time PCR targeting the ammonia monoxygenase A (amoA) gene, which is characteristic of AOB. AOB identity was established using cloning and DNA sequencing. Further details of these experiments can be found in the Supplementary Information.The addition of NH3 to untreated plants significantly stimulated N2O emissions (P<0.001) compared with the controls; by contrast, the plants with sterilised leaves produced significantly less N2O than controls (P<0.001) even with NH3 added (Figure 1) providing strong evidence for emissions being associated with bacteria on the leaves. Control plants did emit N2O suggesting there was either sufficient NH3 available for bacterially generated emissions and/or other plant-based mechanisms were involved (Bowatte et al., 2014).Open in a separate windowFigure 1Effect of an elevated NH3 atmosphere and surface sterilisation of leaves on leaf N2O emissions measured over 1-h periods on three occasions during the day. Values are means (s.e.m.), where n=7.The major AOB species identified was Nitrosospira strain III7 that has been previously shown to produce N2O (Jiang and Bakken, 1999). We measured 109 AOB cells per m2 ryegrass leaf, assuming a specific leaf area of 250 cm2 g−1 leaf.The rate of production of N2O (0.1–0.17 mg N2O-N per m2 leaf area per hour) can be translated to a field situation using the leaf area index (LAI)—1 m2 leaf per m2 ground would be an LAI of 1. LAI in a pasture can vary from <1 to >6 depending on the management (for example, Orr et al., 1988). At LAI of 1, the AOB leaf emission rate would equate to a N2O emission rate of about 0.1–0.3 mg N2O-N per m2 ground per hour. By comparison, the emission rates measured after dairy cattle urine (650 kg N ha−1) was applied to freely and poorly drained soil were 0.024–1.55 and 0.048–3.33 mg N2O-N per m2 ground per hour, respectively (Li and Kelliher, 2005).The fraction of the NH3 that was converted to N2O by the leaf AOB was 0.02–0.42% (mean 0.12%). The mean value is close to that measured for Nitrosospira strains including strain III7 isolated from acidic, loamy and sandy soils where values ranged from 0.07 to 0.10% (Jiang and Bakken, 1999). This is good evidence that the AOB on leaves have the capacity to produce N2O at the same rate as AOB in soils. We do not suggest that leaf AOB will produce as much N2O as soil microbes; however, because leaf AOB have access to a source of substrate—volatilised NH3—that is unavailable to soil microbes and may constitute 26% (Laubach et al., 2013) to 40% (Carran et al., 1982) of the N deposited in the urine, N2O emissions from these aboveground AOB are additional to soil emissions. Further research is required to identify the situations in which leaf AOB contribute to total emissions and to quantify this contribution.  相似文献   
106.

Introduction  

A novel system that combines a compact mobile instrument and Internet communications is presented in this paper for remote evaluation of tremors. The system presents a high potential application in Parkinson's disease and connects to the Internet through a TCP/IP protocol. Tremor transduction is carried out by accelerometers, and the data processing, presentation and storage were obtained by a virtual instrument. The system supplies the peak frequency (fp), the amplitude (Afp) and power in this frequency (Pfp), the total power (Ptot), and the power in low (1-4 Hz) and high (4-7 Hz) frequencies (Plf and Phf, respectively).  相似文献   
107.
Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems-marshes, mangroves, and seagrasses-that may be lost with habitat destruction ('conversion'). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.  相似文献   
108.
109.
In this study, we demonstrate that electromagnetic field (EMF) exposure results in protection from heat induced apoptosis in human cancer cell lines in a time dependent manner. Apoptosis protection was determined by growing HL-60, HL-60R, and Raji cell lines in a 0.15 mT 60 Hz sinusoidal EMF for time periods between 4 and 24 h. After induction of apoptosis, cells were analyzed by the neutral comet assay to determine the percentage of apoptotic cells. To discover the duration of this protection, cells were grown in the EMF for 24 h and then removed for 24 to 48 h before heat shock and neutral comet assays were performed. Our results demonstrate that EMF exposure offers significant protection from apoptosis (P<.0001 for HL-60 and HL-60R, P<.005 for Raji) after 12 h of exposure and that protection can last up to 48 h after removal from the EMF. In this study we further demonstrate the effect of the EMF on DNA repair rates. DNA repair data were gathered by exposing the same cell lines to the EMF for 24 h before damaging the exposed cells and non-exposed cells with H2O2. Cells were allowed to repair for time periods between 0 and 15 min before analysis using the alkaline comet assay. Results showed that EMF exposure significantly decreased DNA repair rates in HL-60 and HL-60R cell lines (P<.001 and P<.01 respectively), but not in the Raji cell line. Importantly, our apoptosis results show that a minimal time exposure to an EMF is needed before observed effects. This may explain previous studies showing no change in apoptosis susceptibility and repair rates when treatments and EMF exposure were administered concurrently. More research is necessary, however, before data from this in vitro study can be applied to in vivo systems.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号