首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1487篇
  免费   78篇
  1565篇
  2022年   9篇
  2021年   22篇
  2020年   6篇
  2019年   14篇
  2018年   15篇
  2017年   14篇
  2016年   34篇
  2015年   61篇
  2014年   56篇
  2013年   96篇
  2012年   120篇
  2011年   110篇
  2010年   56篇
  2009年   70篇
  2008年   80篇
  2007年   79篇
  2006年   75篇
  2005年   83篇
  2004年   59篇
  2003年   64篇
  2002年   77篇
  2001年   23篇
  2000年   13篇
  1999年   19篇
  1998年   23篇
  1997年   12篇
  1996年   17篇
  1995年   17篇
  1994年   19篇
  1993年   18篇
  1992年   15篇
  1991年   10篇
  1990年   17篇
  1989年   14篇
  1988年   9篇
  1987年   7篇
  1986年   5篇
  1985年   9篇
  1984年   10篇
  1983年   7篇
  1982年   14篇
  1981年   8篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1965年   5篇
  1930年   3篇
排序方式: 共有1565条查询结果,搜索用时 0 毫秒
61.
Theory predicts several advantages for animals to recognize kin. These include inbreeding avoidance and an increase in inclusive fitness. In shoaling species, kin recognition may lead to an increased amount of altruism among shoal members. Adult, non‐reproductive three‐spined sticklebacks, Gasterosteus aculeatus, prefer to shoal with kin. This preference was shown for familiar as well as for unfamiliar individuals. However, whether it is based on learned cues of familiar individuals or on innate mechanisms like self‐referent phenotype matching or ‘true’ kin recognition through recognition alleles remains unknown. In our experiments, juvenile fish were given the choice between shoals that differed in relatedness and familiarity. The number of testfish who joined each group indicated that sticklebacks prefer to shoal with familiar kin when the alternative shoal was composed of unfamiliar non‐kin. When one shoal consisted of familiar kin while the second consisted of familiar non‐kin testfish did not show any preference. Kin recognition in sticklebacks is thus most likely mediated by social learning.  相似文献   
62.
Evolutionary explanations of low fertility in modern affluent societies commonly state that low fertility is the outcome of high parental investments in the quality of their children. Although the empirical evidence that modern parents do face a quantity–quality trade-off is strong, two issues that are relevant from an evolutionary perspective have not received much attention. First, sex differences in the proximate aspects of quality have been largely ignored. Second, the relationship between the quantity of children and their reproductive success in contemporary low-fertility societies remains unclear. In this article, we study the quantity–quality trade-off as a trade-off between the number of children and the mate value and reproductive success of those children. We examine the trade-off in two steps. First, a lower number of children is expected to increase the mate value of these children. Second, greater mate value is expected to lead to greater reproductive success. Using sex-specific indicators of mate value, we test these hypotheses in a representative sample of the Dutch population aged 55–85 in 1992 (n=3229). This sample contains information on three successive generations in which the middle generation has completed fertility. We find support for the first hypothesis, but only partial support for the second hypothesis. A higher number of children is traded off against the mate value of the children, but not against their reproductive success. We conclude that the conditions under which the quantity of children is traded off against their reproductive success depend on the social environment.  相似文献   
63.
The mobilization of metabolic energy from adipocytes depends on a tightly regulated balance between hydrolysis and resynthesis of triacylglycerides (TAGs). Hydrolysis is stimulated by β‐adrenergic signalling to PKA that mediates phosphorylation of lipolytic enzymes, including hormone‐sensitive lipase (HSL). TAG resynthesis is associated with high‐energy consumption, which when inordinate, leads to increased AMPK activity that acts to restrain hydrolysis of TAGs by inhibiting PKA‐mediated activation of HSL. Here, we report that in primary mouse adipocytes, PKA associates with and phosphorylates AMPKα1 at Ser‐173 to impede threonine (Thr‐172) phosphorylation and thus activation of AMPKα1 by LKB1 in response to lipolytic signals. Activation of AMPKα1 by LKB1 is also blocked by PKA‐mediated phosphorylation of AMPKα1 in vitro. Functional analysis of an AMPKα1 species carrying a non‐phosphorylatable mutation at Ser‐173 revealed a critical function of this phosphorylation for efficient release of free fatty acids and glycerol in response to PKA‐activating signals. These results suggest a new mechanism of negative regulation of AMPK activity by PKA that is important for converting a lipolytic signal into an effective lipolytic response.  相似文献   
64.

Background

High-fat diets promote hepatic lipid accumulation. Paradoxically, these diets also induce lipogenic gene expression in rodent liver. Whether high expression of these genes actually results in an increased flux through the de novo lipogenic pathway in vivo has not been demonstrated.

Methodology/Principal Findings

To interrogate this apparent paradox, we have quantified de novo lipogenesis in C57Bl/6J mice fed either chow, a high-fat or a n-3 polyunsaturated fatty acid (PUFA)-enriched high-fat diet. A novel approach based on mass isotopomer distribution analysis (MIDA) following 1-13C acetate infusion was applied to simultaneously determine de novo lipogenesis, fatty acid elongation as well as cholesterol synthesis. Furthermore, we measured very low density lipoprotein-triglyceride (VLDL-TG) production rates. High-fat feeding promoted hepatic lipid accumulation and induced the expression of lipogenic and cholesterogenic genes compared to chow-fed mice: induction of gene expression was found to translate into increased oleate synthesis. Interestingly, this higher lipogenic flux (+74 µg/g/h for oleic acid) in mice fed the high-fat diet was mainly due to an increased hepatic elongation of unlabeled palmitate (+66 µg/g/h) rather than to elongation of de novo synthesized palmitate. In addition, fractional cholesterol synthesis was increased, i.e. 5.8±0.4% vs. 8.1±0.6% for control and high fat-fed animals, respectively. Hepatic VLDL-TG production was not affected by high-fat feeding. Partial replacement of saturated fat by fish oil completely reversed the lipogenic effects of high-fat feeding: hepatic lipogenic and cholesterogenic gene expression levels as well as fatty acid and cholesterol synthesis rates were normalized.

Conclusions/Significance

High-fat feeding induces hepatic fatty acid synthesis in mice, by chain elongation and subsequent desaturation rather than de novo synthesis, while VLDL-TG output remains unaffected. Suppression of lipogenic fluxes by fish oil prevents from high fat diet-induced hepatic steatosis in mice.  相似文献   
65.
The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus (raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains.  相似文献   
66.
We have previously shown that the myocardium is a target tissue for estrogen. Here, we have identified rapid non-nuclear estrogen effects on the expression of the early growth response gene-1 (Egr-1) in cardiomyocytes. Egr-1 mRNA and protein were rapidly and strongly induced by estrogen in an estrogen receptor-dependent manner via the extracellular signal-regulated kinase, ERK1/2. A promoter analysis study of a 1.2-kilobase Egr-1 promoter fragment revealed that the serum response elements (SREs) but not the estrogen response elements or AP-1 sites are responsible for Egr-1 induction by estrogen, identifying a novel mechanism of estrogen receptor-dependent gene activation in the myocardium. Both estrogen receptor-alpha and -beta induced the Egr-1 promoter via the SREs as well as an artificial promoter consisting of only five SREs in cardiomyocytes. Electrophoretic mobility shift assays showed that a protein complex containing serum response factor or an antigenically related protein was recruited to the SREs by estrogen treatment of primary cardiomyocytes. The recruitment of the protein complex was inhibited by the specific estrogen receptor antagonist ICI 182,780 as well as the MEK inhibitor PD 98059. Taken together, these results identify SREs as important promoter control elements for an estrogen receptor-dependent mechanism of gene activation in the myocardium.  相似文献   
67.
Iron-sulfur (Fe/S) proteins play an important role in electron transfer processes and in various enzymatic reactions. In eukaryotic cells, known Fe/S proteins are localised in mitochondria, the cytosol and the nucleus. The biogenesis of these proteins has only recently become the focus of investigations. Mitochondria are the major site of Fe/S cluster biosynthesis in the cell. The organelles contain an Fe/S cluster biosynthesis apparatus that resembles that of prokaryotic cells. This apparatus consists of some ten proteins including a cysteine desulfurase producing elemental sulfur for biogenesis, a ferredoxin involved in reduction, and two chaperones. The mitochondrial Fe/S cluster synthesis apparatus not only assembles mitochondrial Fe/S proteins, but also initiates formation of extra-mitochondrial Fe/S proteins. This involves the export of sulfur and possibly iron from mitochondria to the cytosol, a reaction performed by the ABC transporter Atm1p of the mitochondrial inner membrane. A possible substrate of Atm1p is an Fe/S cluster that may be stabilised for transport. Constituents of the cytosol involved in the incorporation of the Fe/S cluster into apoproteins have not been described yet. Many of the mitochondrial proteins involved in Fe/S cluster formation are essential, illustrating the central importance of Fe/S proteins for life. Defects in Fe/S protein biogenesis are associated with the abnormal accumulation of iron within mitochondria and are the cause of an iron storage disease.  相似文献   
68.
Veterinary parasitic vaccines: pitfalls and future directions   总被引:2,自引:0,他引:2  
Most available antiparasitic drugs are safe, cheap and highly effective against a broad spectrum of parasites. However, the alarming increase in the number of parasite species that are resistant to these drugs, the issue of residues in the food chain and the lack of new drugs stimulate development of alternative control methods in which vaccines would have a central role. Parasite vaccines are still rare, but there are encouraging signs that their number will increase in the next decade. The modern paradigm is that an understanding of parasite genes will lead to the identification of useful antigens, which can then be produced in recombinant systems developed as a result of the huge investment in biotechnology. However, we should also continue to devote efforts to basic research on the host-parasite interface.  相似文献   
69.
Scavenger receptor class B, type I (SRBI) is a key regulator of high density lipoprotein (HDL) metabolism. It facilitates the efflux of cholesterol from cells in peripheral tissues to HDL and mediates the selective uptake of cholesteryl esters from HDL in the liver. We investigated the effects of SRBI deficiency in the arterial wall and in the liver using SRBI-deficient mice and wild-type littermates fed a Western-type diet. The SRBI-deficient mice showed massive accumulation of cholesterol-rich HDL in the circulation, reflecting impaired delivery to the liver. Strikingly, SRBI deficiency did not alter hepatic cholesterol (ester) content nor did it affect the expression of key regulators of hepatic cholesterol homeostasis, including HMG-CoA reductase, the low density lipoprotein receptor, and cholesterol 7alpha-hydroxylase. However, a approximately 40% reduction in biliary cholesterol content was observed, and the expression of ABCG8 and ABCG5, ATP half-transporters implicated in the transport of sterols from the liver to the bile, was attenuated by 70 and 35%, respectively. In contrast to the situation in the liver, SRBI deficiency did result in lipid deposition in the aorta and atherosclerosis. Vascular mRNA analysis showed increased expression of inflammatory markers as well as of genes involved in cellular cholesterol homeostasis. Our data show that, although hepatic cholesterol homeostasis is maintained upon feeding a Western-type diet, SRBI deficiency is associated with de-regulation of cholesterol homeostasis in the arterial wall that results in an increased susceptibility to atherosclerosis.  相似文献   
70.
In vivo studies of hepatic carbohydrate metabolism in (genetically modified) conscious mice are hampered by limitations of blood and urine sample sizes. We developed and validated methods to quantify stable isotope dilution and incorporation in small blood and urine samples spotted onto filter paper. Blood glucose and urinary paracetamol-glucuronic acid were extracted from filter paper spots reproducibly and with high yield. Fractional isotopomer distributions of glucose and paracetamol-glucuronic acid when extracted from filter paper spots were almost identical to those isolated from the original body fluids. Rates of infusion of labeled compounds could be adjusted without perturbing hepatic glucose metabolism. This approach was used in mice to find the optimal metabolic condition for the study of hepatic carbohydrate metabolism. In fed mice, no isotopic steady state was observed during a 6-h label-infusion experiment. In 9-h-fasted mice, isotopic steady state was reached after 3 h of label infusion and important parameters in hepatic glucose metabolism could be calculated. The rate of de novo glucose-6-phosphate synthesis was 143 +/- 17 micromol kg(-1) min(-1) and partitioning to plasma glucose was 79.0 +/- 5.2%. In 24-h-fasted mice, abrupt changes were noticed in whole body and in hepatic glucose metabolism at the end of the experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号