首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   32篇
  2021年   4篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   11篇
  2014年   10篇
  2013年   11篇
  2012年   12篇
  2011年   15篇
  2010年   19篇
  2009年   10篇
  2008年   20篇
  2007年   12篇
  2006年   11篇
  2005年   15篇
  2004年   12篇
  2003年   14篇
  2002年   9篇
  2001年   4篇
  2000年   12篇
  1999年   8篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1986年   3篇
  1985年   4篇
  1982年   3篇
  1974年   3篇
  1973年   6篇
  1972年   2篇
  1971年   4篇
  1969年   2篇
  1965年   2篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
  1956年   3篇
  1954年   4篇
  1952年   2篇
  1951年   4篇
  1950年   6篇
  1949年   3篇
  1945年   2篇
排序方式: 共有358条查询结果,搜索用时 15 毫秒
91.
An alternative solid support for oligonucleotide synthesis was developed by coupling a polymer colloid to a modified polyethylene filter disc. The functions on the polymer colloid not used for attachment to the surface were derivatized with a Jeffamine diamine and loaded with appropriate deoxynucleoside succinates. The performance of this support system was evaluated and compared to existing resins.  相似文献   
92.
There are conflicting opinions on the relative importance of photosynthetic limitations under salinity. Quantitative limitation analysis of photosynthesis provides insight into the contributions of different photosynthetic limitations, but it has only been applied under saturating light conditions. Using experimental data and modelling approaches, we examined the influence of light intensity on photosynthetic limitations and quantified the osmotic and ionic effects of salinity on stomatal (LS), mesophyll (LM), biochemical (LB) and light (LL) limitations in cucumber (Cucumis sativus L.) under different light intensities. Non‐linear dependencies of LS, LM and LL to light intensity were found. Osmotic effects on LS and LM increased with the salt concentration in the nutrient solution (Ss) and the magnitude of LM depended on light intensity. LS increased with the Na+ concentration in the leaf water (Sl) and its magnitude depended on Ss. Biochemical capacity declined linearly with Sl but, surprisingly, the relationship between LB and Sl was influenced by Ss. Our results suggest that (1) improvement of stomatal regulation under ionic stress would be the most effective way to alleviate salinity stress in cucumber and (2) osmotic stress may alleviate the ionic effects on LB but aggravate the ionic effects on LS.  相似文献   
93.
We describe the technique and application of energy filtering, automated most-probable loss (MPL) tomography to intermediate voltage electron microscopy (IVEM). We show that for thick, selectively stained biological specimens, this method produces a dramatic increase in resolution of the projections and the computed volumes versus standard unfiltered transmission electron microscopy (TEM) methods. This improvement in resolution is attributed to the reduction of chromatic aberration, which results from the large percentage of inelastic electron-scattering events for thick specimens. These improvements are particularly evident at the large tilt angles required to improve tomographic resolution in the z-direction. This method effectively increases the usable thickness of selectively stained samples that can be imaged at a given accelerating voltage by dramatically improving resolution versus unfiltered TEM and increasing signal-to-noise versus zero-loss imaging, thereby expanding the utility of the IVEM to deliver information from within specimens up to 3 microm thick.  相似文献   
94.
Broin M  Cuiné S  Peltier G  Rey P 《FEBS letters》2000,467(2-3):245-248
In animal cells, yeast and bacteria, thioredoxins are known to participate in the response to oxidative stress. We recently identified a novel type of plant thioredoxin named CDSP 32 for chloroplastic drought-induced stress protein of 32 kDa. In the present work, we measured comparable increases in the glutathione oxidation ratio and in the level of chlorophyll thermoluminescence, a specific marker for thylakoid lipid peroxidation in Solanum tuberosum plants subjected to drought or oxidative treatments (photooxidative stress, gamma irradiation and methyl viologen spraying). Further, substantial accumulations of CDSP 32 mRNA and protein were revealed upon oxidative treatments. These data show for the first time in plants the induction of a thioredoxin by oxidative stress. We conclude that CDSP 32 may preserve chloroplastic structures against oxidative injury upon drought.  相似文献   
95.
96.
In Chlamydomonas reinhardtii cells, H2 photoproduction can be induced in conditions of sulfur deprivation in the presence of acetate. The decrease in photosystem II (PSII) activity induced by sulfur deprivation leads to anoxia, respiration becoming higher than photosynthesis, thereby allowing H2 production. Two different electron transfer pathways, one PSII dependent and the other PSII independent, have been proposed to account for H2 photoproduction. In this study, we investigated the contribution of both pathways as well as the acetate requirement for H2 production in conditions of sulfur deficiency. By using 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a PSII inhibitor, which was added at different times after the beginning of sulfur deprivation, we show that PSII-independent H2 photoproduction depends on previously accumulated starch resulting from previous photosynthetic activity. Starch accumulation was observed in response to sulfur deprivation in mixotrophic conditions (presence of acetate) but also in photoautotrophic conditions. However, no H2 production was measured in photoautotrophy if PSII was not inhibited by DCMU, due to the fact that anoxia was not reached. When DCMU was added at optimal starch accumulation, significant H2 production was measured. H2 production was enhanced in autotrophic conditions by removing O2 using N2 bubbling, thereby showing that substantial H2 production can be achieved in the absence of acetate by using the PSII-independent pathway. Based on these data, we discuss the possibilities of designing autotrophic protocols for algal H2 photoproduction.  相似文献   
97.
We studied the effect of exogenous adenosine in isolated perfused normoxic rat hearts on glycolytic flux through pyruvate kinase (PK). We compared its effect with that of myxothiazol, an inhibitor of mitochondrial ATP production. Moreover, we tested whether an increase of membrane ionic flux with monensin is linked to a stimulation of glycolytic flux through PK. After a 20-min stabilization period adenosine, myxothiazol or monensin were administrated to the perfusate continuously at various concentrations during 10 min. The contraction was monitored and the lactate production in coronary effluents evaluated. The amount of adenine nucleotides and phosphoenolpyruvate was measured in the frozen hearts. Myxothiazol induced a decrease of the left ventricular developed pressure (LVDP : −40%) together with a stimulation of glycolytic flux secondary to PK activation. In contrast, adenosine primarily reduced heart rate (HR: −30%) with only marginal effects on LVDP. This was associated with an inhibition of glycolysis at the level of PK. The Na+ ionophore monensin affected HR (+14%) and LVDP (+25%). This effect was associated with a stimulation of glycolysis secondary to the stimulation of PK. These results provide new information of action of adenosine in the heart and support the concept of a direct coupling between glycolysis and process regulating sarcolemmal ionic fluxes.  相似文献   
98.
The effectiveness of RFLP, DAMD-PCR, ISSR and RAPD markers in assessing polymorphism and relationships between 24 commercial lines of Phaseolus vulgaris L.was evaluated. We have used a Phaseolus-specific minisatellite sequence as a probe, which enabled 23 of the bean lines tested to be fingerprinted. Based on the sequence information obtained, primers corresponding to the bean-specific minisatellite core sequence were used in subsequent PCR amplifications. Our observations indicated that while the DAMD-PCR was sensitive in detecting genetic variation between bean species and between accessions of P. vulgaris, when used alone it may be limited in its ability to detect genetic variation among cultivated bean lines due to the low number of loci amplified. Only one out of the five ISSR primers tested was efficient in generating multiple band profiles, which was insufficient to distinguish all the different bean lines. Reproducible RAPD profiles were obtained, and these allowed us to differentiate all the genotypes tested with seven primers. We ultimately used only results from RFLP and RAPD markers to explore the genetic diversity among commercial bean lines. Both analyses led to the same clustering of the bean lines according to their geographical origins (United States or Europe). With respect to the European lines, the results obtained from RAPD data also enable the lines to be clustered according to their creators. Received: 15 January 2000 / Accepted: 21 March 2000  相似文献   
99.
100.
The ω-3 polyunsaturated fatty acids account for more than 50% of total fatty acids in the green microalga Chlamydomonas reinhardtii, where they are present in both plastidic and extraplastidic membranes. In an effort to elucidate the lipid desaturation pathways in this model alga, a mutant with more than 65% reduction in total ω-3 fatty acids was isolated by screening an insertional mutant library using gas chromatography-based analysis of total fatty acids of cell pellets. Molecular genetics analyses revealed the insertion of a TOC1 transposon 113 bp upstream of the ATG start codon of a putative ω-3 desaturase (CrFAD7; locus Cre01.g038600). Nuclear genetic complementation of crfad7 using genomic DNA containing CrFAD7 restored the wild-type fatty acid profile. Under standard growth conditions, the mutant is indistinguishable from the wild type except for the fatty acid difference, but when exposed to short-term heat stress, its photosynthesis activity is more thermotolerant than the wild type. A comparative lipidomic analysis of the crfad7 mutant and the wild type revealed reductions in all ω-3 fatty acid-containing plastidic and extraplastidic glycerolipid molecular species. CrFAD7 was localized to the plastid by immunofluorescence in situ hybridization. Transformation of the crfad7 plastidial genome with a codon-optimized CrFAD7 restored the ω-3 fatty acid content of both plastidic and extraplastidic lipids. These results show that CrFAD7 is the only ω-3 fatty acid desaturase expressed in C. reinhardtii, and we discuss possible mechanisms of how a plastid-located desaturase may impact the ω-3 fatty acid content of extraplastidic lipids.Research on lipid metabolism in microalgae has flourished in recent years due to their potential as a rich source of ω-3 fatty acids (Guschina and Harwood, 2006; Khozin-Goldberg et al., 2011) and as a feedstock for biodiesel (Hu et al., 2008b; Rosenberg et al., 2008; Beer et al., 2009; Radakovits et al., 2010; Wijffels and Barbosa, 2010; Merchant et al., 2012; Work et al., 2012). Oils produced by microalgae resemble that of plants (Hu et al., 2008b), with the exception that they contain higher proportions of polyunsaturated fatty acid (PUFA) species (Harwood and Guschina, 2009). Desaturation of acyl groups in glycerolipids is catalyzed by fatty acid desaturases (FADs), which insert a C=C bond at a specifically defined position of an acyl chain (Shanklin and Cahoon, 1998). The degree of unsaturation of fatty acid components largely determines the chemical property and thus the utility of the oils produced. FADs have been one of the major tools for the genetic engineering of oil composition in land crops (Shanklin and Cahoon, 1998; Napier et al., 1999). In view of biodiesel applications, low PUFA content is advantageous in algal oil because of oxidation issues (Frankel, 1991).With the suites of sophisticated molecular genetic and genomic tools developed in the green microalga Chlamydomonas reinhardtii and the existence of substantial literature related to its cell biology, physiology, and biochemistry, this organism has emerged as a major model for research on algal oil (Radakovits et al., 2010; Merchant et al., 2012; Liu and Benning, 2013). Although the understanding of lipid metabolism in C. reinhardtii largely relies on sequence homologies to other models (Riekhof et al., 2005) and is still rather limited compared with the model plant Arabidopsis (Arabidopsis thaliana; Li-Beisson et al., 2010), functional studies based on mutants have started to provide important insights into the biosynthesis and turnover of membrane and storage lipids in this model alga (Riekhof et al., 2005; Work et al., 2010; Fan et al., 2011; Goodson et al., 2011; Boyle et al., 2012; Li et al., 2012a, 2012b; Yoon et al., 2012).In C. reinhardtii, C16 and C18 PUFAs (ω-3 + ω-6) make up to 60 mol% of total membrane fatty acids, of which more than 80% are ω-3 species (Giroud and Eichenberger, 1988; Siaut et al., 2011). Biochemical evidence for lipid-linked desaturation of fatty acyl chains has been established in C. reinhardtii over 20 years (Giroud and Eichenberger, 1989), but only two C. reinhardtii mutants affected in fatty acid desaturation have been described to date. These are crfad6 (hf-9), an insertional mutant for the plastidial ω-6 desaturase FAD6 (Sato et al., 1995), and microRNA-based silenced lines for the Δ4 desaturase CrΔ4FAD (Zäuner et al., 2012). The putative microsomal Δ12 desaturase FAD2 (Chi et al., 2008) and front-end ω-13 desaturase (Kajikawa et al., 2006) have been characterized by heterologous expression in the methylotrophic yeast Pichia pastoris, but no mutant is available. Moreover, although ω-3 PUFA is the most abundant fatty acid class in C. reinhardtii, the ω-3 desaturase remains uncharacterized, and no mutant with specific reduction in ω-3 content has been isolated so far.In Arabidopsis and C. reinhardtii, ω-3 PUFAs are present in both plastidic and extraplastidic lipids such as monogalactosyldiacylglycerol (MGDG) and phosphatidylethanolamine (PtdEtn), respectively (Mendiola-Morgenthaler et al., 1985; Giroud et al., 1988). While in plants there are distinct genes for plastidial and extraplastidial ω-3 FADs (Wallis and Browse, 2002), only one putative ω-3 desaturase seems encoded in the C. reinhardtii genome (version 5.0; Merchant et al., 2007). This raises several intriguing possibilities, including the existence of a mechanism to export ω-3 acyls from their site of biogenesis to other membranes or a dual localization of the ω-3 desaturase homolog (plastid and endoplasmic reticulum [ER]). In this study, we report the identification and characterization of a C. reinhardtii mutant defective in the promoter region of the putative ω-3 FAD encoded by the Cre01.g038600 locus. We show that while this enzyme is localized to plastids, impairment in its expression leads to a reduction of ω-3 fatty acids acylated to both plastidial and ER lipids. Additionally, using plastidial transformation of the mutant, it is demonstrated that the location of this desaturase in the plastid alone is sufficient to ensure normal ω-3 fatty acid content in extraplastidic lipids. Possible acyl desaturation and trafficking mechanisms implied by these findings are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号