首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   32篇
  2021年   4篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   11篇
  2014年   10篇
  2013年   11篇
  2012年   12篇
  2011年   15篇
  2010年   19篇
  2009年   10篇
  2008年   20篇
  2007年   12篇
  2006年   11篇
  2005年   15篇
  2004年   12篇
  2003年   14篇
  2002年   9篇
  2001年   4篇
  2000年   12篇
  1999年   8篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1986年   3篇
  1985年   4篇
  1982年   3篇
  1974年   3篇
  1973年   6篇
  1972年   2篇
  1971年   4篇
  1969年   2篇
  1965年   2篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
  1956年   3篇
  1954年   4篇
  1952年   2篇
  1951年   4篇
  1950年   6篇
  1949年   3篇
  1945年   2篇
排序方式: 共有358条查询结果,搜索用时 15 毫秒
101.
Multiple technologies have emerged for structural diversification and efficient production of metabolites of drug molecules. These include expanded use of enzymatic and bioorganic transformations that mimic biological systems, biomimetic catalysis and electrochemical techniques. As this field continues to mature the breadth of transformations is growing beyond simple oxidative processes due in part to parallel development of more efficient catalytic methods for functionalization of unactivated scaffolds. These technologies allow for efficient structural diversification of both aromatic and aliphatic substrates in many cases via single step reactions without the use of protecting groups.  相似文献   
102.
Neoseiulus californicus (McGregor) is a natural enemy of pest mites used worldwide in many crops. Its correct identification is thus essential to ensure biological control success. The present study aimed to characterize molecular and morphological intraspecific variations for assisting in the diagnosis of the species and to build baseline information about expected variations within a commercially important phytoseiid species. Morphological and molecular [12S rRNA, cytochrome b mitochondrial (mt)DNA, and internal transcribed spacer] analyses were carried out on fourteen populations collected worldwide and on one mass‐reared strain. The genetic distances between the specimens of N. californicus and another related species were high and no overlap was observed, sustaining the reliability of such molecular methods for assisting a specific diagnosis. Furthermore, the genetic distances between populations of N. californicus were very low and overlap between intra‐ and interpopulations distances was observed, except for two populations collected in France (Marsillargues and Midi‐Pyrénées). The high mitochondrial differentiation between these two latter populations and the others questions their specific status: do they belong to the species N. californicus or to another cryptic species? However, using nuclear DNA marker analyses, no distinct differences were observed. Furthermore, even if significant morphological differences were observed between the populations, these differences were very small and the standard errors within each population were very low. We thus concluded that all the populations studied belong to the species N. californicus, despite unexpected high mitochondrial variations. The present study thus displays the importance of an integrative taxonomic approach for avoiding misidentifications. A discussion on morphological and mtDNA variations in relation to diagnostic reliability is developped. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 393–406.  相似文献   
103.
104.
Type II NADH dehydrogenases (NDH-2) are monomeric flavoenzymes catalyzing electron transfer from NADH to quinones. While most NDH-2 preferentially oxidize NADH, some of these enzymes have been reported to efficiently oxidize NADPH. With the aim to modify the NADPH vs NADH specificity of the relatively NADH specific Agrobacterium tumefaciens NDH-2, two conserved residues (E and A) of the substrate binding domain were, respectively, mutated to Q and S. We show that when E was replaced by Q at position 203 the enzyme was able to oxidize NADPH as efficiently as NADH. Growth on a minimal medium of an Escherichia coli double mutant lacking both NDH-1 and NDH-2 was restored more efficiently when mutated proteins able to oxidize NADPH were expressed. The biotechnological interest of expressing such modified enzymes in photosynthetic organisms is discussed.  相似文献   
105.
While we often assume tree growth–climate relationships are time‐invariant, impacts of climate phenomena such as the El Niño Southern Oscillation (ENSO) and the North American Monsoon (NAM) may challenge this assumption. To test this assumption, we grouped ring widths (1900‐present) in three southwestern US conifers into La Niña periods (LNP) and other years (OY). The 4 years following each La Niña year are included in LNP, and despite 1–2 year growth declines, compensatory adjustments in tree growth responses result in essentially equal mean growth in LNP and OY, as average growth exceeds OY means 2–4 years after La Niña events. We found this arises because growth responses in the two periods are not interchangeable: Due to differences in growth–climate sensitivities and climatic memory, parameters representing LNP growth fail to predict OY growth and vice versa (decreases in R2 up to 0.63; lowest R2 = 0.06). Temporal relationships between growth and antecedent climate (memory) show warmer springs and longer growing seasons negatively impact growth following dry La Niña winters, but that NAM moisture can rescue trees after these events. Increased importance of monsoonal precipitation during LNP is key, as the largest La Niña‐related precipitation deficits and monsoonal precipitation contributions both occur in the southern part of the region. Decreases in first order autocorrelation during LNP were largest in the heart of the monsoon region, reflecting both the greatest initial growth declines and the largest recovery. Understanding the unique climatic controls on growth in Southwest conifers requires consideration of both the influences and interactions of drought, ENSO, and NAM, each of which is likely to change with continued warming. While plasticity of growth sensitivity and memory has allowed relatively quick recovery in the tree‐ring record, recent widespread mortality events suggest conditions may soon exceed the capacity for adjustment in current populations.  相似文献   
106.
Fatty acid photodecarboxylase (FAP) is one of the few enzymes that require light for their catalytic cycle (photoenzymes). FAP was first identified in the microalga Chlorella variabilis NC64A, and belongs to an algae-specific subgroup of the glucose–methanol–choline oxidoreductase family. While the FAP from C. variabilis and its Chlamydomonas reinhardtii homolog CrFAP have demonstrated in vitro activities, their activities and physiological functions have not been studied in vivo. Furthermore, the conservation of FAP activity beyond green microalgae remains hypothetical. Here, using a C. reinhardtii FAP knockout line (fap), we showed that CrFAP is responsible for the formation of 7-heptadecene, the only hydrocarbon of this alga. We further showed that CrFAP was predominantly membrane-associated and that >90% of 7-heptadecene was recovered in the thylakoid fraction. In the fap mutant, photosynthetic activity was not affected under standard growth conditions, but was reduced after cold acclimation when light intensity varied. A phylogenetic analysis that included sequences from Tara Ocean identified almost 200 putative FAPs and indicated that FAP was acquired early after primary endosymbiosis. Within Bikonta, FAP was retained in secondary photosynthetic endosymbiosis lineages but absent from those that lost the plastid. Characterization of recombinant FAPs from various algal genera (Nannochloropsis, Ectocarpus, Galdieria, Chondrus) provided experimental evidence that FAP photochemical activity was present in red and brown algae, and was not limited to unicellular species. These results thus indicate that FAP was conserved during the evolution of most algal lineages where photosynthesis was retained, and suggest that its function is linked to photosynthetic membranes.  相似文献   
107.
108.
1. The impact of immigration on the recovery of diatom assemblages after chronic exposure to copper was investigated in laboratory microcosms. 2. We examined the recovery trajectories of copper‐contaminated biofilms after reducing copper stress and with or without the possibility of immigration from unimpaired communities. 3. The biofilms mixed with unimpaired communities returned to a ‘control’ assemblage structure within 6 weeks, with recovery patterns depending on the endpoint considered (i.e. 2 weeks for relative abundances of diatom species but 6 weeks for total diatom biomass). In contrast, no recovery was observed in assemblages placed under control conditions without external immigrants. 4. Immigration has important effects on the recovery of quantitative and qualitative characteristics of biofilms.  相似文献   
109.
This study aimed at determining whether glucose-insulin-potassium (GIK) solutions modify the NADH/NAD(+) ratio during postischemic reperfusion and whether their cardioprotective effect can be attributed to this change in part through reduction of the mitochondrial reactive oxygen species (ROS) production. The hearts of 72 rats were perfused with a buffer containing glucose (5.5 mM) and hexanoate (0.5 mM). They were maintained in normoxia for 30 min and then subjected to low-flow ischemia (0.5% of the preischemic coronary flow for 20 min) followed by reperfusion (45 min). From the beginning of ischemia, the perfusate was subjected to various changes: enrichment with GIK solution, enrichment with lactate (2 mM), enrichment with pyruvate (2 mM), enrichment with pyruvate (2 mM) plus ethanol (2 mM), or no change for the control group. Left ventricular developed pressure, heart rate, coronary flow, and oxygen consumption were monitored throughout. The lactate/pyruvate ratio of the coronary effluent, known to reflect the cytosolic NADH/NAD(+) ratio and the fructose-6-phosphate/dihydroxyacetone-phosphate (F6P/DHAP) ratio of the reperfused myocardium, were evaluated. Mitochondrial ROS production was also estimated. The GIK solution improved the recovery of mechanical function during reperfusion. This was associated with an enhanced cytosolic NADH/NAD(+) ratio and reduced mitochondrial ROS production. The cardioprotection was also observed when the hearts were perfused with fluids known to increase the cytosolic NADH/NAD(+) ratio (lactate, pyruvate plus ethanol) compared with the other fluids (control and pyruvate groups). The hearts with a high mechanical recovery also displayed a low F6P/DHAP ratio, suggesting that an accelerated glycolysis rate may be responsible for increased cytosolic NADH production. In conclusion, the cardioprotection induced by GIK solutions could occur through an increase in the cytosolic NADH/NAD(+) ratio, leading to a decrease in mitochondrial ROS production.  相似文献   
110.
In Chlamydomonas reinhardtii cells, H2 photoproduction can be induced in conditions of sulfur deprivation in the presence of acetate. The decrease in photosystem II (PSII) activity induced by sulfur deprivation leads to anoxia, respiration becoming higher than photosynthesis, thereby allowing H2 production. Two different electron transfer pathways, one PSII dependent and the other PSII independent, have been proposed to account for H2 photoproduction. In this study, we investigated the contribution of both pathways as well as the acetate requirement for H2 production in conditions of sulfur deficiency. By using 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a PSII inhibitor, which was added at different times after the beginning of sulfur deprivation, we show that PSII-independent H2 photoproduction depends on previously accumulated starch resulting from previous photosynthetic activity. Starch accumulation was observed in response to sulfur deprivation in mixotrophic conditions (presence of acetate) but also in photoautotrophic conditions. However, no H2 production was measured in photoautotrophy if PSII was not inhibited by DCMU, due to the fact that anoxia was not reached. When DCMU was added at optimal starch accumulation, significant H2 production was measured. H2 production was enhanced in autotrophic conditions by removing O2 using N2 bubbling, thereby showing that substantial H2 production can be achieved in the absence of acetate by using the PSII-independent pathway. Based on these data, we discuss the possibilities of designing autotrophic protocols for algal H2 photoproduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号