首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   4篇
  70篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   8篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1993年   2篇
  1988年   1篇
  1984年   2篇
  1980年   2篇
  1978年   1篇
排序方式: 共有70条查询结果,搜索用时 0 毫秒
41.
This study examined the selectivity of organic anion transporters OAT1 and OAT3 for structural congeners of the heavy metal chelator 2,3-dimercapto-1-propanesulfonic acid (DMPS). Thiol-reactive reagents were also used to test structural predictions based on a homology model of OAT1 structure. DMPS was near equipotent in its ability to inhibit OAT1 (IC(50) = 83 μM) and OAT3 (IC(50) = 40 μM) expressed in Chinese hamster ovary cells. However, removal of a thiol group (3-mercapto-1-propanesulfonic acid) resulted in a 2.5-fold increase in IC(50) toward OAT1 vs. a ~55-fold increase in IC(50) toward OAT3. The data suggested that compound volume/size is important for binding to OAT1/OAT3. The sensitivity to HgCl(2) of OAT1 and OAT3 was also dramatically different, with IC(50) values of 104 and 659 μM, respectively. Consistent with cysteines of OAT1 being more accessible from the external medium than those of OAT3, thiol-reactive reagents reacted preferentially with OAT1 in cell surface biotinylation assays. OAT1 was less sensitive to HgCl(2) inhibition and less reactive toward membrane-impermeant thiol reactive reagents following mutation of cysteine 440 (C440) to an alanine. These data indicate that C440 in transmembrane helix 10 of OAT1 is accessible from the extracellular space. Indeed, C440 was exposed to the aqueous phase of the presumptive substrate translocation pathway in a homology model of OAT1 structure. The limited thiol reactivity in OAT3 suggests that the homologous cysteine residue (C428) is less accessible. Consistent with their homolog-specific selectivities, these data highlight structural differences in the substrate binding regions of OAT1 and OAT3.  相似文献   
42.
We have determined the nucleotide sequence of a 1,200-base pair (bp) genomic fragment that includes the kappa-chain constant-region gene (C kappa) from two species of native Australian rodents, Rattus leucopus cooktownensis and Rattus colletti. Comparison of these sequences with each other and with other rodent C kappa genes shows three surprising features. First, the coding regions are diverging at a rate severalfold higher than that of the nearby noncoding regions. Second, replacement changes within the coding region are accumulating at a rate at least as great as that of silent changes. Third, most of the amino acid replacements are localized in one region of the C kappa domain--namely, the carboxy-terminal "bends" in the alpha-carbon backbone. These three features have previously been described from comparisons of the two allelic forms of C kappa genes in R. norvegicus. These data imply the existence of considerable evolutionary constraints on the noncoding regions (based on as yet undetermined functions) or powerful positive selection to diversify a portion of the constant-region domain (whose physiological significance is not known). These surprising features of C kappa evolution appear to be characteristic only of closely related C kappa genes, since comparison of rodent with human sequences shows the expected greater conservation of coding regions, as well as a predominance of silent nucleotide substitutions within the coding regions.   相似文献   
43.

Background

Cellular infection with human immunodeficiency virus (HIV) both in vitro and in vivo requires a member of the chemokine receptor family to act as a co-receptor for viral entry. However, it is presently unclear to what extent the interaction of HIV proteins with chemokine receptors generates intracellular signals that are important for productive infection.

Results

In this study we have used a recently described family of chemokine inhibitors, termed BSCIs, which specifically block chemokine-induced chemotaxis without affecting chemokine ligands binding to their receptors. The BSCI termed Peptide 3 strongly inhibited CCR5 mediated HIV infection of THP-1 cells (83 ± 7% inhibition assayed by immunofluoresence staining), but had no effect on gp120 binding to CCR5. Peptide 3 did not affect CXCR4-dependent infection of Jurkat T cells.

Conclusion

These observations suggest that, in some cases, intracellular signals generated by the chemokine coreceptor may be required for a productive HIV infection.  相似文献   
44.
The significance of conserved cysteines in the human organic cation transporter 2 (hOCT2), namely the six cysteines in the long extracellular loop (loop cysteines) and C474 in transmembrane helix 11, was examined. Uptake of tetraethylammonium (TEA) and 1-methyl-4-phenypyridinium (MPP) into Chinese hamster ovary cells was stimulated >20-fold by hOCT2 expression. Both cell surface expression and transport activity were reduced considerably following mutation of individual loop cysteines (C51, C63, C89, C103, and C143), and the C89 and C103 mutants had reduced Michaelis constants (K(t)) for MPP. The loop cysteines were refractory to interaction with thiol-reactive biotinylation reagents, except after pretreatment of intact cells with dithiothreitol or following cell membrane solubilization. Reduction of disulfide bridge(s) did not affect transport, but labeling the resulting free thiols with maleimide-PEO(2)-biotin did. Mutation of C474 to an alanine or phenylalanine did not affect the K(t) value for MPP. In contrast, the K(t) value associated with TEA transport was reduced sevenfold in the C474A mutant, and the C474F mutant failed to transport TEA. This study shows that some but not all of the six extracellular loop cysteines exist within disulfide bridge(s). Each loop cysteine is important for plasma membrane targeting, and their mutation can influence substrate binding. The effect of C474 mutation on TEA transport suggests that it contributes to a TEA binding surface. Given that TEA and MPP are competitive inhibitors, the differential effects of C474 modification on TEA and MPP binding suggest that the binding surfaces for each are distinct, but overlapping in area.  相似文献   
45.
Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.  相似文献   
46.
Synonymous codons are not used equally in many organisms, and the extent of codon bias varies among loci. Earlier studies have suggested that more highly expressed loci in Drosophila melanogaster are more biased, consistent with findings from several prokaryotes and unicellular eukaryotes that codon bias is partly due to natural selection for translational efficiency. We link this model of varying selection intensity to the population-genetics prediction that the effectiveness of natural selection is decreased under reduced recombination. In analyses of 385 D. melanogaster loci, we find that codon bias is reduced in regions of low recombination (i.e., near centromeres and telomeres and on the fourth chromosome). The effect does not appear to be a linear function of recombination rate; rather, it seems limited to regions with the very lowest levels of recombination. The large majority of the genome apparently experiences recombination at a sufficiently high rate for effective natural selection against suboptimal codons. These findings support models of the Hill-Robertson effect and genetic hitchhiking and are largely consistent with multiple reports of low levels of DNA sequence variation in regions of low recombination.   相似文献   
47.
48.
Na(+)-K(+)-2Cl(-) cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na(+)-K(+)-2Cl(-) cotransporter was colocalized with Na(+)-K(+)-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 parts per thousand seawater had increased gill Na(+)-K(+)-2Cl(-) cotransporter abundance, large and numerous Na(+)-K(+)-2Cl(-) cotransporter immunoreactive chloride cells on the primary filament, and reduced numbers on the secondary lamellae. Gill Na(+)-K(+)-2Cl(-) cotransporter levels were low in presmolts (February) and increased 3.3-fold in smolts (May), coincident with elevated seawater tolerance. Cotransporter levels decreased below presmolt values in postsmolts in freshwater (June). The size and number of immunoreactive chloride cells on the primary filament increased threefold during smolting and decreased in postsmolts. Gill Na(+)-K(+)-ATPase activity and Na(+)-K(+)-2Cl(-) cotransporter abundance increased in parallel during both seawater acclimation and smolting. These data indicate a direct role of the Na(+)-K(+)-2Cl(-) cotransporter in salt secretion by gill chloride cells of teleost fish.  相似文献   
49.
Present communication reports laboratory and pot experiments conducted to study the influence of water and osmotic stress on nitrogen uptake and metabolism in two wheat (Triticum aestivum L) cultivars with and without potassium supplementation. Polyethylene glycol 6000-induced osmotic stress/restricted irrigation caused a considerable decline in the activity of nitrate reductase, glutamate synthase, alanine and aspartate aminotransferases, and glutamate dehydrogenase. Potassium considerably improved nitrogen metabolism under normal water supply conditions and also resulted in amelioration of the negative impact of water and osmotic stresses indicating that potassium supplementation can be used as a potential tool for enhancing the nitrogen use efficiency in wheat for exploiting its genetic potential.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号