首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   25篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   9篇
  2013年   7篇
  2012年   8篇
  2011年   9篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   4篇
  2005年   9篇
  2004年   9篇
  2003年   6篇
  2002年   11篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有139条查询结果,搜索用时 187 毫秒
31.
The knowledge of signaling pathways that are triggered by physiological and pathological conditions or drug treatment is essential for the comprehension of the biological events that regulate cellular responses. Recently novel platforms based on "reverse-phase protein arrays" have proven to be useful in the study of different pathways, but they still lack the possibility to detect events in the complexity of a cellular context. We developed an "immunocell-array" of cells on chip where, upon cell plating, growing, drug treatment, and fixation, by spotting specific antibodies we can detect the localization and state of hundreds of proteins involved in specific signaling pathways. By applying this technology to mammalian cells we analyzed signaling proteins involved in the response to DNA damage and identified a chromatin remodeling pathway following bleomycin treatment. We propose our technology as a new tool for the array-based multiplexed analysis of signaling pathways in drug response screening, for the proteomics of profiling patient cells, and ultimately for the high throughput screening of antibodies for immunofluorescence applications.  相似文献   
32.
p66Shc, a redox enzyme that enhances reactive oxygen species (ROS) production by mitochondria, promotes T cell apoptosis. We have addressed the mechanisms regulating p66Shc-dependent apoptosis in T cells exposed to supraphysiological increases in [Ca2+]c. p66Shc expression resulted in profound mitochondrial dysfunction in response to the Ca2+ ionophore A23187, as revealed by dissipation of mitochondrial transmembrane potential, cytochrome c release and decreased ATP levels. p66Shc expression also caused a dramatic alteration in the cells' Ca2+-handling ability, which resulted in Ca2+ overload after A23187 treatment. The impairment in Ca2+ homeostasis was ROS dependent and caused by defective Ca2+ extrusion due at least in part to decreased plasma membrane ATPase (PMCA) expression. Both effects of p66Shc required Ca2+-dependent serine-36 phosphorylation. The mitochondrial effects of p66Shc were potentiated by but not strictly dependent on the rise in [Ca2+]c. Thus, Ca2+-dependent p66Shc phosphorylation causes both mitochondrial dysfunction and impaired Ca2+ homeostasis, which synergize in promoting T cell apoptosis.  相似文献   
33.
34.
Recent studies have shown that elongation factors extracted from archaea/eukarya and from eubacteria exhibit different structural and functional properties. Along this line, it has been demonstrated that, in contrast to EF-Tu, Sulfolobus solfataricus EF-1alpha in complex with GDP (SsEF-1alpha.GDP) does not bind Mg(2+), when the ion is present in the crystallization medium at moderate concentration (5 mM). To further investigate the role that magnesium plays in the exchange process of EF-1alpha and to check the ability of SsEF-1alpha.GDP to bind the ion, we have determined the crystal structure of SsEF-1alpha.GDP in the presence of a nonphysiological concentration (100 mM) of Mg(2+). The analysis of the coordination of Mg(2+) unveils the structural bases for the marginal role played by the ion in the nucleotide exchange process. Furthermore, nucleotide exchange experiments carried out on a truncated form of SsEF-1alpha, consisting only of the nucleotide binding domain, demonstrate that the low affinity of SsEF-1alpha.GDP for Mg(2+) is due to the local architecture of the active site and does not depend on the presence of the other two domains. Finally, considering the available structures of EF-1alpha, a detailed mechanism for the nucleotide exchange process has been traced. Notably, this mechanism involves residues such as His14, Arg95, Gln131, and Glu134, which are strictly conserved in all archaea and eukarya EF-1alpha sequences hitherto reported.  相似文献   
35.
36.
The yeast Sir2 protein mediates chromatin silencing through an intrinsic NAD-dependent histone deacetylase activity. Sir2 is a conserved protein and was recently shown to regulate lifespan extension both in budding yeast and worms. Here, we show that SIRT1, the human Sir2 homolog, is recruited to the promyelocytic leukemia protein (PML) nuclear bodies of mammalian cells upon overexpression of either PML or oncogenic Ras (Ha-rasV12). SIRT1 binds and deacetylates p53, a component of PML nuclear bodies, and it can repress p53-mediated transactivation. Moreover, we show that SIRT1 and p53 co-localize in nuclear bodies upon PML upregulation. When overexpressed in primary mouse embryo fibroblasts (MEFs), SIRT1 antagonizes PML-induced acetylation of p53 and rescues PML-mediated premature cellular senescence. Taken together, our data establish the SIRT1 deacetylase as a novel negative regulator of p53 function capable of modulating cellular senescence.  相似文献   
37.
Recognition specificity of individual EH domains of mammals and yeast.   总被引:1,自引:0,他引:1  
The Eps homology (EH) domain is a recently described protein binding module that is found, in multiple or single copies, in several proteins in species as diverse as human and yeast. In this work, we have investigated the molecular details of recognition specificity mediated by this domain family by characterizing the peptide-binding preference of 11 different EH domains from mammal and yeast proteins. Ten of the eleven EH domains could bind at least some peptides containing an Asn-Pro-Phe (NPF) motif. By contrast, the first EH domain of End3p preferentially binds peptides containing an His-Thr/Ser-Phe (HT/SF) motif. Domains that have a low affinity for the majority of NPF peptides reveal some affinity for a third class of peptides that contains two consecutive amino acids with aromatic side chains (FW or WW). This is the case for the third EH domain of Eps15 and for the two N-terminal domains of YBL47c. The consensus sequences derived from the peptides selected from phage-displayed peptide libraries allows for grouping of EH domains into families that are characterized by different NPF-context preference. Finally, comparison of the primary sequence of EH domains with similar or divergent specificity identifies a residue at position +3 following a conserved tryptophan, whose chemical characteristics modulate binding preference.  相似文献   
38.
Of the three Shc isoforms, p66Shc is responsible for fine-tuning p52/p46Shc signaling to Ras and has been implicated in apoptotic responses to oxidative stress. Here we show that human peripheral blood lymphocytes and mouse thymocytes and splenic T cells acquire the capacity to express p66Shc in response to apoptogenic stimulation. Using a panel of T-cell transfectants and p66Shc(-/-) T cells, we show that p66Shc expression results in increased susceptibility to apoptogenic stimuli, which depends on Ser36 phosphorylation and correlates with an altered balance in apoptosis-regulating gene expression. Furthermore, p66Shc blunts mitogenic responses to T-cell receptor engagement, at least in part by transdominant inhibition of p52Shc signaling to Ras/mitogen-activated protein kinases, in an S36-dependent manner. The data highlight a novel interplay between p66Shc and p52Shc in the control of T-cell fate.  相似文献   
39.
40.
A precise balance between quiescence and proliferation is crucial for the lifelong function of hematopoietic stem cells (HSCs). Cyclins E1 and E2 regulate exit from quiescence in fibroblasts, but their role in HSCs remains unknown. Here, we report a non-redundant role for cyclin E1 in mouse HSCs. A long-term culture-initiating cell (LTC-IC) assay indicated that the loss of cyclin E1, but not E2, compromised the colony-forming activity of primitive hematopoietic progenitors. Ccne1−/− mice showed normal hematopoiesis in vivo under homeostatic conditions but a severe impairment following myeloablative stress induced by 5-fluorouracil (5-FU). Under these conditions, Ccne1−/− HSCs were less efficient in entering the cell cycle, resulting in decreased hematopoiesis and reduced survival of mutant mice upon weekly 5-FU treatment. The role of cyclin E1 in homeostatic conditions became apparent in aged mice, where HSC quiescence was increased in Ccne1−/− animals. On the other hand, loss of cyclin E1 provided HSCs with a competitive advantage in bone marrow serial transplantation assays, suggesting that a partial impairment of cell cycle entry may exert a protective role by preventing premature depletion of the HSC compartment. Our data support a role for cyclin E1 in controlling the exit from quiescence in HSCs. This activity, depending on the physiological context, can either jeopardize or protect the maintenance of hematopoiesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号