首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2634篇
  免费   86篇
  国内免费   4篇
  2021年   27篇
  2018年   57篇
  2017年   39篇
  2016年   48篇
  2015年   69篇
  2014年   59篇
  2013年   127篇
  2012年   103篇
  2011年   112篇
  2010年   82篇
  2009年   68篇
  2008年   79篇
  2007年   99篇
  2006年   74篇
  2005年   95篇
  2004年   84篇
  2003年   73篇
  2002年   82篇
  2001年   48篇
  2000年   52篇
  1999年   39篇
  1998年   27篇
  1997年   28篇
  1996年   30篇
  1995年   22篇
  1994年   32篇
  1993年   29篇
  1992年   39篇
  1991年   47篇
  1990年   36篇
  1989年   36篇
  1988年   52篇
  1987年   43篇
  1986年   53篇
  1985年   44篇
  1984年   40篇
  1983年   30篇
  1982年   27篇
  1981年   31篇
  1979年   32篇
  1978年   34篇
  1977年   37篇
  1976年   32篇
  1975年   34篇
  1974年   31篇
  1973年   28篇
  1972年   30篇
  1971年   26篇
  1970年   21篇
  1969年   22篇
排序方式: 共有2724条查询结果,搜索用时 15 毫秒
121.
Bacillus cereus is a ubiquitous endospore-forming bacterium, which mainly affects humans as a food-borne pathogen. Bacillus cereus can contaminate groundwater used to irrigate food crops. Here, we examined the ability of the emetic strain B. cereus F4810/72 to survive abiotic conditions encountered in groundwater. Our results showed that vegetative B. cereus cells rapidly evolved in a mixed population composed of endospores and asporogenic variants bearing spo0A mutations. One asporogenic variant, VAR-F48, was isolated and characterized. VAR-F48 can survive in sterilized groundwater over a long period in a vegetative form and has a competitive advantage compared to its parental strain. Proteomics analysis allowed us to quantify changes to cellular and exoproteins after 24 and 72 h incubation in groundwater, for VAR-F48 compared to its parental strain. The results revealed a significant re-routing of the metabolism in the absence of Spo0A. We concluded that VAR-F48 maximizes its energy use to deal with oligotrophy, and the emergence of spo0A-mutated variants may contribute to the persistence of emetic B. cereus in natural oligotrophic environments.  相似文献   
122.

Phosphorus (P) is an essential macronutrient to all crops including rice and it plays a key role in various plant activities and development. Low availability of P in the soils negatively, influences rice crop growth and causes significant yield loss. In the present study, we characterized a set of 56 germplasm lines for their tolerance to low soil P by screening them at low soil P and optimum soil P levels along with low soil P tolerant and sensitive check varieties. These lines were genotyped for the presence/absence of tolerant allele with respect to the major low soil P tolerance QTL, Pup1, using a set of locus specific PCR-based markers, viz., K46-1, K46-2, K52 and K46CG-1. High genetic variability was observed for various traits associated with low soil P tolerance. The yield parameters from normal and low soil P conditions were used to calculate stress tolerance indices and classify the genotypes according to their tolerance level. Out of the total germplasm lines screened, 15 lines were found to be tolerant to low soil P condition based on the yield reduction in comparison to the tolerant check, but most of them harbored the complete or partial Pup1 locus. Interestingly, two tolerant germplasm lines, IC216831 and IC216903 were observed to be completely devoid of Pup1 and hence they can be explored for new loci underlying low soil P tolerance.

  相似文献   
123.
The Protein Journal - As expected, several new variants of Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2) emerged and have been detected around the world throughout this Coronavirus...  相似文献   
124.
Abstract

Three new Ru(II) polypyridyl complexes [Ru(phen)2CIIP]2+ (1) {CIIP = 2-(5-Chloro-3a H-Isoindol-3-yl)-1H-Imidazo[4,5-f][1, 10]phenantholine} (phen = 1, 10 phenanthroline), [Ru(bpy)2CIIP]2+ (2) (bpy = 2, 2′ bipyridine) and [Ru(dmb)2CIIP]2+ (3) (dmb = 4, 4′-dimethyl 2, 2′ bipyridine) were synthesized and characterized by different spectral methods. The DNA-binding behavior of these complexes was investigated by absorption, emission spectroscopic titration and viscosity measurements, indicating that these three complexes bind to CT-DNA in an intercalative mode, but binding affinities of these complexes were different. The DNA-binding constants Kb of complexes 1, 2 and 3 were calculated in the order of 106. All three complexes cleave pBR322 DNA in photoactivated cleavage studies and exhibit good antimicrobial activity. Anticancer activity of these Ru(II) complexes was evaluated in MCF7 cells. Cytotoxicity by MTT assay showed growth inhibition in a dose dependent manner. Cell cycle analysis by flow cytometry data showed an increase in Sub G1 population. Annexin V FITC/PI staining confirms that these complexes cause cell death by the induction of apoptosis.  相似文献   
125.
The use of biochemical or physiological measurements as indicators of ecotoxicity is under constant development and has the advantage of delineating effects before the appearance of disease. However, these biomarkers are often part of a battery of tests, and it is difficult to integrate them together to gain an overall view of an organism's health. The aim of this study was to develop an index that could integrate the data derived from a battery of biomarkers for application to both spatial and temporal studies. Mya arenaria clams were collected at different sites along the Saguenay Fjord (Quebec, Canada). Six biomarkers were measured: metallothioneins, DNA strand breakage, lipid peroxidation, vitellin-like proteins, phagocytosis, and non-specific esterase activity in haemocytes. A biomarker index was obtained by summing the biomarker values expressed in term of classes. Classes were determined by a distribution-free approach derived from the theory of rough sets. The results of the spatial study show that the index values discriminated well between contaminated and uncontaminated sites. The highly polluted sites had the highest index values (18 compared with a reference value of 14). In the temporal study, the index was also able to highlight possible contamination-induced alterations, even though the interpretation of temporal variation is complicated by natural variations occurring throughout the year. A control chart approach is proposed for determining contaminated sites in both spatial and temporal surveys.  相似文献   
126.
Despite recent advances in understanding mechanism of toxicity, the development of biomarkers (biochemicals that vary significantly with exposure to chemicals) for pesticides and environmental contaminants exposure is still a challenging task. Carbofuran is one of the most commonly used pesticides in agriculture and said to be most toxic carbamate pesticide. It is necessary to identify the biochemicals that can vary significantly after carbofuran exposure on earthworms which will help to assess the soil ecotoxicity. Initially, we have optimized the extraction conditions which are suitable for high-throughput gas chromatography mass spectrometry (GC-MS) based metabolomics for the tissue of earthworm, Metaphire posthuma. Upon evaluation of five different extraction solvent systems, 80% methanol was found to have good extraction efficiency based on the yields of metabolites, multivariate analysis, total number of peaks and reproducibility of metabolites. Later the toxicity evaluation was performed to characterize the tissue specific metabolomic perturbation of earthworm, Metaphire posthuma after exposure to carbofuran at three different concentration levels (0.15, 0.3 and 0.6 mg/kg of soil). Seventeen metabolites, contributing to the best classification performance of highest dose dependent carbofuran exposed earthworms from healthy controls were identified. This study suggests that GC-MS based metabolomic approach was precise and sensitive to measure the earthworm responses to carbofuran exposure in soil, and can be used as a promising tool for environmental eco-toxicological studies.  相似文献   
127.
Aquaporin 0 (AQP0) formerly known as membrane intrinsic protein (MIP), is expressed exclusively in the lens during terminal differentiation of fiber cells. AQP0 plays an important role not only in the regulation of water content but also in cell-to-cell adhesion of the lens fiber cells. We have investigated the thermal stress-induced structural alterations of detergent (octyl glucoside)-solubilized calf lens AQP0. The results show an increase in the amount of AQP0 that aggregated as the temperature increased from 40°C to 65°C. α-Crystallin, molecular chaperone abundantly present in the eye lens, completely prevented the AQP0 aggregation at a 1∶1 (weight/weight) ratio. Since α-crystallin consists of two gene products namely αA- and αB-crystallins, we have tested the recombinant proteins on their ability to prevent thermal-stress induced AQP0 aggregation. In contrast to the general observation made with other target proteins, αA-crystallin exhibited better chaperone-like activity towards AQP0 compared to αB-crystallin. Neither post-translational modifications (glycation) nor C-terminus truncation of AQP0 have any appreciable effect on its thermal aggregation properties. α-Crystallin offers similar protection against thermal aggregation as in the case of the unmodified AQP0, suggesting that αcrystallin may bind to either intracellular loops or other residues of AQP0 that become exposed during thermal stress. Far-UV circular dichroism studies indicated a loss of αhelical structures when AQP0 was subjected to temperatures above 45°C, and the presence of α-crystallin stabilized these secondary structures. We report here, for the first time, that α-crystallin protects AQP0 from thermal aggregation. Since stress-induced structural perturbations of AQP0 may affect the integrity of the lens, presence of the molecular chaperone, α-crystallin (particularly αA-crystallin) in close proximity to the lens membrane is physiologically relevant.  相似文献   
128.
Chytridiomycosis has been identified as a major cause of global amphibian declines. Despite widespread evidence of Batrachochytrium dendrobatidis infection in South African frogs, sampling for this disease has not focused on threatened species, or whether this pathogen poses a disease risk to these species. This study assessed the occurrence of Bd-infection in South African Red List species. In addition, all known records of infection from South Africa were used to model the ecological niche of Bd to provide a better understanding of spatial patterns and associated disease risk. Presence and prevalence of Bd was determined through quantitative real-time PCR of 360 skin swab samples from 17 threatened species from 38 sites across the country. Average prevalence was 14.8% for threatened species, with pathogen load varying considerably between species. MaxEnt was used to model the predicted distribution of Bd based on 683 positive records for South Africa. The resultant probability threshold map indicated that Bd is largely restricted to the wet eastern and coastal regions of South Africa. A lack of observed adverse impacts on wild threatened populations supports the endemic pathogen hypothesis for southern Africa. However, all threatened species occur within the limits of the predicted distribution for Bd, exposing them to potential Bd-associated risk factors. Predicting pathogen distribution patterns and potential impact is increasingly important for prioritising research and guiding management decisions.  相似文献   
129.
Silver-exchanged silicate glass has been irradiated by 532-nm pulsed Nd:YAG laser in order to locally form metallic nanoparticles. The particular interest of this process is to locally control the silver nanoparticles (NPs) growth. Silver ions are exchanged with sodium ions near the glass surface after dumping of a silicate glass few minutes in silver and sodium nitrates molten salt. A low-energy density laser exposure (0.239 J/cm2) chosen at the ablation threshold allows to observe the kinetics of the silver NPs growth according to the increasing shots number. An on-line optical measurement is carried out after each shot to identify the most important steps during the irradiation process. According to this measurement, we have determined four steps highlighted by UV/Visible spectrophotometry and we have identified the influence of located surface plasmon resonance. Three combined material analysis methods were used to understand the glass/laser interaction mechanism: we outlined the material volume variations by profilometric method, the element distribution by scanning electron microscopy and finally the structural distribution of the irradiated region by a local infrared investigation. The trend for NPs formation revealed by the UV/Visible spectrophotometry is thus explained by the formation of a ring expelled from a central hole. We highlight that the on-line extinction measurement can be used to data process the NPs evolution.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号