首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168933篇
  免费   13314篇
  国内免费   6866篇
  2023年   1428篇
  2022年   3255篇
  2021年   6257篇
  2020年   4077篇
  2019年   4984篇
  2018年   5149篇
  2017年   3981篇
  2016年   5926篇
  2015年   8985篇
  2014年   10292篇
  2013年   11572篇
  2012年   14075篇
  2011年   12976篇
  2010年   8133篇
  2009年   7123篇
  2008年   9030篇
  2007年   8425篇
  2006年   7688篇
  2005年   6687篇
  2004年   6191篇
  2003年   5617篇
  2002年   5258篇
  2001年   2706篇
  2000年   2388篇
  1999年   2568篇
  1998年   1871篇
  1997年   1730篇
  1996年   1613篇
  1995年   1507篇
  1994年   1511篇
  1993年   1258篇
  1992年   1528篇
  1991年   1300篇
  1990年   1002篇
  1989年   964篇
  1988年   887篇
  1987年   748篇
  1986年   727篇
  1985年   785篇
  1984年   655篇
  1983年   570篇
  1982年   593篇
  1981年   523篇
  1980年   468篇
  1979年   355篇
  1978年   371篇
  1977年   342篇
  1976年   286篇
  1975年   273篇
  1974年   309篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
51.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
52.
Following arteriolar occlusion, tissue oxygen concentration decreases and anoxic tissue eventually develops. Although anoxia first appears in the region most distal to the capillary at the venous end, it eventually spreads throughout the entire region of supply. In this paper the changing oxygen concentration, from the time of occlusion until the tissue is entirely anoxic, is examined mathematically. The equations governing oxygen transport to tissue are solved by iterating a nonlinear integral equation. This solution is valid until anoxia first appears. After anoxia develops it is necessary to solve a moving boundary problem. This is done using the method of matched asymptotic expansions, and accurate solutions are obtained for a wide range of physiological conditions.  相似文献   
53.
Insulin receptors of rat skeletal muscle were purified by first extracting a plasma membrane-enriched pellet obtained from a muscle homogenate with Triton X-100, followed by WGA-Sepharose and insulin-Sepharose affinity chromatography. Routinely, 4-5 micrograms of purified receptor were obtained from 15 g of tissue. The purified receptors are composed of two major polypeptides with molecular weights of 130,000 and 95,000, respectively. The binding of [125I]insulin by the purified receptors was analyzed by a Scatchard plot. There are at least two binding components. The high-affinity component, with an apparent association constant (Ka) of 2.0 X 10(9) M-1, comprises 10% of the total insulin binding sites; while the low-affinity component, with a Ka value of 1.4 X 10(8) M-1, represents 90% of the binding sites. Assuming the insulin receptor to have a molecular weight of 300,000, the receptor binds 1.7 mol of insulin per mol at saturation. Insulin is capable of stimulating the autophosphorylation of the beta-subunit of the muscle insulin receptor (Mr 95,000) by 5-10-fold. The stoichiometry of this phosphorylation reaction was determined as 0.8 phosphate per insulin binding site after a 10 min incubation with 100 nM insulin. In a previous report, I showed that the insulin stimulation of glucose transport in diaphragms from neonatal rats was small, even although the diaphragms had normal levels of insulin receptors and glucose transporters (Wang, C. (1985). Proc. Natl. Acad. Sci. USA 82, 3621-3625). To determine whether or not receptor autophosphorylation might be related to this insensitivity to insulin, the level of receptor phosphorylation was quantitated in diaphragms from rats at different stages of development. Autophosphorylation remains unchanged from birth to 21 days of age, suggesting that the lower insulin-stimulated glucose uptake by diaphragms at early stages of postnatal development as compared to that by diaphragms of older rats, is not due to a difference in receptor kinase.  相似文献   
54.
55.
Molecular heterogeneity of D-end products detected by anti-H-2.28 sera   总被引:1,自引:0,他引:1  
Immunoprecipitation of NP-40 lysates of 125I-labeled lymph-node cells with different anti-H-2 sera and with anti-Qa-2 serum has shown that the BALB/cByA strain (H-2d, Qa-2-negative) expresses, besides H-2Ld, another molecule that is not detectable in the BALB/c-H-2dm2 strain. Electrophoresis in SDS polyacrylamide gels indicated that this molecule, provisionally designated Lq, has an apparent molecular weight of 41000 daltons, in contrast to approximately 49000 daltons for H-2Kd and H-2Ld, and 47000 daltons for H-2Dd molecules. The anti-Qa-2 serum precipitated from the Qa-2-positive strains BALB/cHeA but not from the Qa-2-negative strains BALB/cByA and BALB/c-H-2dm2 a protein that gave a very strong band corresponding to the molecular weight 41000 daltons in the gel electrophoresis. The biochemical characteristics of the Lq molecule are thus more similar to those of Qa-2 than of H-2 antigens.  相似文献   
56.
Cecropin XJ, as a heat stable antimicrobial peptide (AMP), displayed broad bacteriostatic activities, effectively inhibited proliferation of cancer cells and induced cell apoptosis in vitro. However, it exhibited little hemolytic activity and very low cytotoxicity to erythrocytes and normal cells. Although exerts multiple remarkable bioactivities, the refined molecular conformation of native Cecropin XJ remains unsolved. The aim of the present study is to comprehensively investigate the physicochemical characteristics and structure-function relationship of this antimicrobial peptide by using a series of bioinformatics and experimental approaches. In this study, we revealed that the mature Cecropin XJ consists of 41 amino acids, containing two α-helical structures from Lys7 to Lys25 and from Ala29 to Ile39. The phylogenetic tree indicated that Cecropin XJ belongs to the Class I AMPs of cecropin family. Hydrophobic analysis showed Cecropin XJ is a typical amphiphilic molecule. The surface of Cecropin XJ was found to have a much wide range of electrostatic potential from ?83.243 to +83.243. The amphipathicity and surface potential of Cecropin XJ partially supported the AMP pore-forming hypothesis. Scanning electron microscopy experimentally confirmed the damages of Cecropin XJ to microbial membrane. Four predicted docking sites respectively for magnesium ion (Mg2+), adenosine diphosphate (ADP), bacteriopheophytin (BPH), and guanosine triphosphate (GTP) were found on the surface of Cecropin XJ. Thereinto, Mg2+ was experimentally proved to suppress the antibacterial activity of Cecropin XJ; both GTP and ADP enhanced the bactericidal activities to varying degrees. The present study provides a foundation for further investigation of molecular evolution, structural modification, and functional mechanisms of Cecropin XJ.  相似文献   
57.
7-dehydrocholesterol (7-DHC) and cholesterol (CHOL) are biomarkers of Smith-Lemli-Opitz Syndrome (SLOS), a congenital autosomal recessive disorder characterized by elevated 7-DHC level in patients. Hair samples have been shown to have great diagnostic and research value, which has long been neglected in the SLOS field. In this study, we sought to investigate the feasibility of using hair for SLOS diagnosis. In the presence of antioxidants (2,6-ditert-butyl-4-methylphenol and triphenylphosphine), hair samples were completely pulverized and extracted by micro-pulverized extraction in alkaline solution or in n-hexane. After microwave-assisted derivatization with N,O-Bis(trimethylsilyl)trifluoroacetamide, the analytes were measured by GC-MS. We found that the limits of determination for 7-DHC and CHOL were 10 ng/mg and 8 ng/mg, respectively. In addition, good linearity was obtained in the range of 50–4000 ng/mg and 30–6000 ng/mg for 7-DHC and CHOL, respectively, which fully meets the requirement for SLOS diagnosis and related research. Finally, by applying the proposed method to real hair samples collected from 14 healthy infants and two suspected SLOS patients, we confirmed the feasibility of hair analysis as a diagnostic tool for SLOS. In conclusion, we present an optimized and validated analytical method for the simultaneous determination of two SLOS biomarkers using human hair.  相似文献   
58.
59.
60.
Yang  Su-Rong  Sun  Huan-Xin  Hu  Zhen-Zhen  Wang  Si-Heng  Sun  Hui  Xue  Yin-Jia  Ye  Chen-Bo 《Sleep and biological rhythms》2017,15(1):57-65
Sleep and Biological Rhythms - Chronic sleep deprivation (SD) is an overwhelming problem in young students. Firstly, we investigated whether different levels of pre-training SD had effects on...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号