全文获取类型
收费全文 | 1622篇 |
免费 | 120篇 |
国内免费 | 142篇 |
专业分类
1884篇 |
出版年
2024年 | 2篇 |
2023年 | 17篇 |
2022年 | 54篇 |
2021年 | 81篇 |
2020年 | 62篇 |
2019年 | 86篇 |
2018年 | 78篇 |
2017年 | 59篇 |
2016年 | 83篇 |
2015年 | 103篇 |
2014年 | 111篇 |
2013年 | 129篇 |
2012年 | 132篇 |
2011年 | 120篇 |
2010年 | 76篇 |
2009年 | 74篇 |
2008年 | 85篇 |
2007年 | 58篇 |
2006年 | 59篇 |
2005年 | 48篇 |
2004年 | 50篇 |
2003年 | 41篇 |
2002年 | 37篇 |
2001年 | 31篇 |
2000年 | 34篇 |
1999年 | 38篇 |
1998年 | 15篇 |
1997年 | 15篇 |
1996年 | 15篇 |
1995年 | 15篇 |
1994年 | 8篇 |
1993年 | 8篇 |
1992年 | 10篇 |
1991年 | 9篇 |
1990年 | 10篇 |
1989年 | 5篇 |
1988年 | 3篇 |
1987年 | 4篇 |
1986年 | 6篇 |
1985年 | 7篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有1884条查询结果,搜索用时 15 毫秒
11.
Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis
Wenqing Chen Dongjing Qu Lipeng Zhai Meifeng Tao Yemin Wang Shuangjun Lin Neil P. J. Price Zixin Deng 《蛋白质与细胞》2010,1(12):1093
Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an α, β -1″,11′-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression (HHE) strategy combined with a bioassay. Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains, demonstrating the role of the genes for the biosynthesis of tunicamycins. Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes (tunA– tunL ). Amongst these is a putative radical SAM enzyme (Tun B) with a potentially unique role in biosynthetic carbon-carbon bond formation. Hence, a seven-step novel pathway is proposed for tunicamycin biosynthesis. Moreover, two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827. These data provide clarification of the novel mechanisms for tunicamycin biosynthesis, and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies. 相似文献
12.
13.
Chao Zhai Francesco Alderisio Piotr S?owiński Krasimira Tsaneva-Atanasova Mario di Bernardo 《PloS one》2016,11(4)
Joint improvisation is often observed among humans performing joint action tasks. Exploring the underlying cognitive and neural mechanisms behind the emergence of joint improvisation is an open research challenge. This paper investigates jointly improvised movements between two participants in the mirror game, a paradigmatic joint task example. First, experiments involving movement coordination of different dyads of human players are performed in order to build a human benchmark. No designation of leader and follower is given beforehand. We find that joint improvisation is characterized by the lack of a leader and high levels of movement synchronization. Then, a theoretical model is proposed to capture some features of their interaction, and a set of experiments is carried out to test and validate the model ability to reproduce the experimental observations. Furthermore, the model is used to drive a computer avatar able to successfully improvise joint motion with a human participant in real time. Finally, a convergence analysis of the proposed model is carried out to confirm its ability to reproduce joint movements between the participants. 相似文献
14.
15.
Chen Wang Saisai Feng Yue Xiao Mingluo Pan Jianxin Zhao Hao Zhang Qixiao Zhai Wei Chen 《Microbial biotechnology》2021,14(2):577-586
Bacteroides is a bacterial genus that is known to closely interact with the host. The potential role of this genus is associated with its ecological status and distribution in the intestine. However, the current 16S V3–V4 region sequencing method can only detect the abundance of this genus, revealing a need for a novel sequencing method that can elucidate the composition of Bacteroides in the human gut microbiota. In this study, a core gene, rpsD, was selected as a template for the design of a Bacteroides-specific primer set. We used this primer set to develop a novel assay based on the Illumina MiSeq sequencing platform that enabled an accurate assessment of the Bacteroides compositions in complex samples. Known amounts of genomic DNA from 10 Bacteroides species were mixed with a complex sample and used to evaluate the performance and detection limit of our assay. The results were highly consistent with those of direct sequencing with a low Bacteroides DNA detection threshold (0.01 ng), supporting the reliability of our assay. In addition, the assay could detect all the known Bacteroides species within the faecal sample. In summary, we provide a sensitive and specific approach to determining the Bacteroides species in complex samples. 相似文献
16.
Song X Li P Zhai J Zhou M Ma L Liu B Jeong DH Nakano M Cao S Liu C Chu C Wang XJ Green PJ Meyers BC Cao X 《The Plant journal : for cell and molecular biology》2012,69(3):462-474
Higher plants have evolved multiple proteins in the RNase III family to produce and regulate different classes of small RNAs with specialized molecular functions. In rice (Oryza sativa), numerous genomic clusters are targeted by one of two microRNAs (miRNAs), miR2118 and miR2275, to produce secondary small interfering RNAs (siRNAs) of either 21 or 24 nucleotides in a phased manner. The biogenesis requirements or the functions of the phased small RNAs are completely unknown. Here we examine the rice Dicer-Like (DCL) family, including OsDCL1, -3a, -3b and -4. By deep sequencing of small RNAs from different tissues of the wild type and osdcl4-1, we revealed that the processing of 21-nucleotide siRNAs, including trans-acting siRNAs (tasiRNA) and over 1000 phased small RNA loci, was largely dependent on OsDCL4. Surprisingly, the processing of 24-nucleotide phased small RNA requires the DCL3 homolog OsDCL3b rather than OsDCL3a, suggesting functional divergence within DCL3 family. RNA ligase-mediated 5' rapid amplification of cDNA ends and parallel analysis of RNA ends (PARE)/degradome analysis confirmed that most of the 21- and 24-nucleotide phased small RNA clusters were initiated from the target sites of miR2118 and miR2275, respectively. Furthermore, the accumulation of the two triggering miRNAs requires OsDCL1 activity. Finally, we show that phased small RNAs are preferentially produced in the male reproductive organs and are likely to be conserved in monocots. Our results revealed significant roles of OsDCL4, OsDCL3b and OsDCL1 in the 21- and 24-nucleotide phased small RNA biogenesis pathway in rice. 相似文献
17.
X. B. Li C. Z. Liang H. G. Wu W. X. Zhai N. Huang L. H. Zhu 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,92(6):702-708
A tandemly repeated DNA sequence (RRS7) was isolated from Oryza alta (CCDD). RRS7-related sequences were also found tandemly arrayed in genomes AA, BB, BBCC, CC, and EE, and a small amount of RRS7-related sequences were detected in genome FF and the Oryza species with unknown genomes. DNA sequence analysis of the 1844-bp insert of RRS7 revealed that it contained six tandemly repeated units, of which five were 155 bp in length and one was 194 bp in length and contained an imperfect internal 39-bp duplication. Southern blot analysis showed that the boundary sequence contained in RRS7 is a single-copy sequence. A 155-bp consensus sequence derived from the six monomeric repeats contained no internal repeat and showed no significant homology to other currently known sequences. The results of Southern blot and sequence analysis revealed that there are at least two subfamilies present in the RRS7 family; these are represented by the DraI site and the MspI site, respectively. Restriction digestion with two pairs of isoschizomers MboI/Sau3A and MspI/HpaII demonstrated that most of the C residues in the GATC sites and the internal C in the CCGG sites of the RRS7 family in O. Alta were methylated. The usefulness of the RRS7 family in determining the evolutionary relationship of the genome DD and other Oryza genomes is discussed. 相似文献
18.
Su-Fang Niu Yun Zhai Ren-Xie Wu Zhen-Bang Liang Hao-Ran Zhang Zhong-Lu Li Qi Qiu Ling-Li Zhou 《Zeitschrift fur angewandte Ichthyologie》2021,37(2):308-313
Trachurus japonicus is an economically important fish in the northwestern Pacific Ocean. However, its resources have declined seriously and there is an urgent need for a wide-range of investigations of the existing genetic resources. This requires a large number of diverse molecular markers with high discriminating power. In this study, we identified 43,264 perfect SSRs in T. japonicus genome using SLAF-seq technology. Of these, we randomly selected 106 SSRs (tri-nucleotide to hexa-nucleotide) to test for polymorphism. Eventually, we successfully developed a total of 33 loci including 8 tri-nucleotide and 25 long repeat motifs (tetra-nucleotide to hexa-nucleotide). The number of alleles (Na) of these loci ranged from 4 to 24 (mean 12.6). The observed heterozygosity (Ho) and expected heterozygosity (He) varied from 0.258 to 0.969 (mean 0.723) and from 0.452 to 0.962 (mean 0.827), respectively. All loci except TJ6-7 were highly informative (PIC > 0.5). These results showed that the shortlisted 33 loci exhibited moderate to relatively high genetic diversity, of which 18 were regarded as highly polymorphic and well-resolved. In summary, these diverse and potential microsatellites detected in our study provide substantial genetic basis for the screening of polymorphic SSR markers of T. japonicus and also provide a powerful tool to perform further studies on the genetic resource assessment and conservation of T. japonicus. 相似文献
19.
Kai Ren Buying Li Zhenhua Liu Lin Xia Mengen Zhai Xufeng Wei Weixun Duan Shiqiang Yu 《Journal of cellular and molecular medicine》2021,25(10):4623-4636
Thoracic aortic dissection (TAD) is an aortic disease associated with dysregulated extracellular matrix composition and de-differentiation of vascular smooth muscle cells (SMCs). Growth Differentiation Factor 11 (GDF11) is a member of transforming growth factor β (TGF-β) superfamily associated with cardiovascular diseases. The present study attempted to investigate the expression of GDF11 in TAD and its effects on aortic SMC phenotype transition. GDF11 level was found lower in the ascending thoracic aortas of TAD patients than healthy aortas. The mouse model of TAD was established by β-aminopropionitrile monofumarate (BAPN) combined with angiotensin II (Ang II). The expression of GDF11 was also decreased in thoracic aortic tissues accompanied with increased inflammation, arteriectasis and elastin degradation in TAD mice. Administration of GDF11 mitigated these aortic lesions and improved the survival rate of mice. Exogenous GDF11 and adeno-associated virus type 2 (AAV-2)-mediated GDF11 overexpression increased the expression of contractile proteins including ACTA2, SM22α and myosin heavy chain 11 (MYH11) and decreased synthetic markers including osteopontin and fibronectin 1 (FN1), indicating that GDF11 might inhibit SMC phenotype transition and maintain its contractile state. Moreover, GDF11 inhibited the production of matrix metalloproteinase (MMP)-2, 3, 9 in aortic SMCs. The canonical TGF-β (Smad2/3) signalling was enhanced by GDF11, while its inhibition suppressed the inhibitory effects of GDF11 on SMC de-differentiation and MMP production in vitro. Therefore, we demonstrate that GDF11 may contribute to TAD alleviation via inhibiting inflammation and MMP activity, and promoting the transition of aortic SMCs towards a contractile phenotype, which provides a therapeutic target for TAD. 相似文献
20.
Zhaoxi Wang Feng Chen Rihong Zhai Lingsong Zhang Li Su Xihong Lin Taylor Thompson David C. Christiani 《PloS one》2009,4(2)