首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20101篇
  免费   1654篇
  国内免费   5篇
  21760篇
  2023年   88篇
  2022年   235篇
  2021年   434篇
  2020年   234篇
  2019年   307篇
  2018年   423篇
  2017年   353篇
  2016年   638篇
  2015年   1032篇
  2014年   1171篇
  2013年   1412篇
  2012年   1752篇
  2011年   1654篇
  2010年   1063篇
  2009年   943篇
  2008年   1273篇
  2007年   1298篇
  2006年   1106篇
  2005年   1066篇
  2004年   1035篇
  2003年   942篇
  2002年   895篇
  2001年   209篇
  2000年   150篇
  1999年   157篇
  1998年   233篇
  1997年   149篇
  1996年   136篇
  1995年   127篇
  1994年   112篇
  1993年   102篇
  1992年   81篇
  1991年   65篇
  1990年   70篇
  1989年   60篇
  1988年   50篇
  1987年   56篇
  1986年   43篇
  1985年   47篇
  1984年   43篇
  1983年   62篇
  1982年   38篇
  1981年   33篇
  1980年   36篇
  1979年   28篇
  1978年   42篇
  1977年   35篇
  1976年   32篇
  1975年   25篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
The effect of chilling on diurnal changes in activity of adenosine 5'-phosphosulfate sulfotransferase, glutathione reductase (EC 1.6.4.2) and glutathione transferase (EC 2.5.1.18) was analysed in the second leaf of Z 7, a chilling-tolerant, and Penjalinan, a chilling-sensitive maize (Zea mays L.) genotype. Nitrate reductase (EC 1.6.6.1) was measured for comparison. All enzyme activities examined changed with a typical diurnal rhythm in both genotypes cultivated at 25°C. Adenosine 5'-phosphosulfate sulfotransferase and nitrate reductase activity peaked during the light period, then decreased and reached lowest levels at the end of the dark period. Glutathione reductase activity increased in the dark and decreased during the light period. Maximum glutathione transferase activities were measured in the middle of the light period, minimal ones in the middle of the dark period. At 12°C these diurnal changes were eliminated in all enzymes examined of both genotypes.
The average adenosine 5'-phosphosulfate sulfotransferase and glutathione reductase activity were higher in the chilling-tolerant Z 7 than in the sensitive Penjanilan at 12°C in the light. Increased levels of both enzymes may contribute in establishing increased levels of cysteine and reduced glutathione in the chilling-tolerant Z 7. Indeed it has been shown before that the chilling-tolerant maize genotypes contain higher levels of both compounds at low temperatures than chilling-sensitive ones.  相似文献   
162.
Recently synthesized π-extended symmetrical tetraoxa[8]circulenes that exhibit electroluminescent properties were calculated at the density functional theory (DFT) level using the quantum theory of atoms in molecules (QTAIM) approach to electron density distribution analysis. Nucleus-independent chemical shift (NICS) indices were used to characterize the aromaticity of the studied molecules. The tetraoxa[8]circulene molecules were found to consist of two antiaromatic perimeters (according to the Hückel “4n” antiaromaticity rule) that include 8 and 24 π-electrons. Conversely, NICS calculations demonstrated the existence of a common π-extended system (distributed like a flat ribbon) in the studied tetraoxa[8]circulene molecules. Thus, these symmetrical tetraoxa[8]circulene molecules provide examples of diatropic systems characterized by the presence of induced diatropic ring currents.
Figure
Special aromaticity of the tetraoxa[8]circulenes  相似文献   
163.
Cerebral endothelial cells accomplish the barrier functions between blood and brain interstitium. Structural features are the tight junctions between adjacent endothelial cells and the formation of marginal folds at the cell-cell contacts. The glucocorticoid hydrocortisone (HC) has been reported to enforce the blood-brain-barrier in vitro measurable by an increase of the transendothelial electrical resistance. This study shows the impact of HC on the mechanical and morphological properties of confluent cell layers of brain microvascular endothelial cells. HC induces an increase in height of these marginal folds and a reduction of the intercellular contact surface. These morphological changes are accompanied by changes in cell elasticity. Staining of fibrous actin indicates that HC induces a reorganization of the actin cortex. The quantitative determination of the local elastic properties of cells reveals for the first time an HC-induced increase of the representative Young's modulus according to cytoskeletal rearrangements. For this study, cells of two different species, porcine brain capillary endothelial cells and murine brain capillary endothelial cells, were used yielding similar results, which clearly demonstrates that the HC effect on the cell elasticity is species independent.  相似文献   
164.
Increased bone resorption is a major characteristic of multiple myeloma and is caused by osteoclast activation and osteoblast inhibition (uncoupling). Myeloma cells alter the local regulation of bone metabolism by increasing the receptor activator of NF-kappaB ligand (RANKL) and decreasing osteoprotegerin expression within the bone marrow microenvironment, thereby stimulating the central pathway for osteoclast formation and activation. In addition, they produce the chemokines MIP-1alpha, MIP-1beta, and SDF-1alpha, which also increase osteoclast activity. On the other hand, myeloma cells suppress osteoblast function by the secretion of osteoblast inhibiting factors, e.g., the Wnt inhibitors DKK-1 and sFRP-2. Moreover, they inhibit differentiation of osteoblast precursors and induce apoptosis in osteoblasts. The resulting bone destruction releases several cytokines, which in turn promote myeloma cell growth. Therefore, the inhibition of bone resorption could stop this vicious circle and not only decrease myeloma bone disease, but also the tumor progression.  相似文献   
165.
We have previously observed that stepwise replacement of amino acid residues in the nascent base-pair binding pocket of RB69 DNA polymerase (RB69pol) with Ala or Gly expanded the space in this pocket, resulting in a progressive increase in misincorporation. However, in vivo results with similar RB69pol nascent base-pair binding pocket mutants showed that mutation rates, as determined by the T4 phage rI forward assay and rII reversion assay, were significantly lower for the RB69pol S565G/Y567A double mutant than for the Y567A single mutant, the opposite of what we would have predicted. To investigate the reasons for this unexpected result, we have determined the pre-steady-state kinetic parameters and crystal structures of relevant ternary complexes. We found that the S565G/Y567A mutant generally had greater base selectivity than the Y567A mutant and that the kinetic parameters for dNMP insertion, excision of the 3′-terminal nucleotide residue, and primer extension beyond a mispair differed not only between these two mutants but also between the two highly mutable sequences in the T4 rI complementary strand. Comparison of the crystal structures of these two mutants with correct and incorrect incoming dNTPs provides insight into the unexpected increase in the fidelity of the S565G/Y567A double mutant. Taken together, the kinetic and structural results provide a basis for integrating and interpreting in vivo and in vitro observations.  相似文献   
166.
We have studied the cytoskeletal nature of a brain subcellular fraction previously shown to contain polyribosomes. We have identified the major proteins of this fraction by electrophoretic comparison to a standard cytoskeletal fraction and by immunodetection. These methods have shown the presence of actin, glial fibrillary acidic protein, and neurofilament triplet proteins. We have also studied the effect of various ions and nonionic detergents on the stability of this structure. It was stable in presence of Triton X-100 up to 2% but disrupted by 200 mM K+ acetate.Abbreviations CMT cytomatrix - CSK cytoskeleton - DOC sodium deoxycholate - DTT dithiothreitol - EGTA ethylenglycolbis (-Ether)-N,N-N-N-Tetraacetic Acid - GFAP glial fibrillary acidic protein - PR polyribosome - PRCMC polyribosomes-cytomatrix complex  相似文献   
167.
PKA (protein kinase A) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with AKAPs (A kinase-anchoring proteins). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with unrelated sequences. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RIIalpha subunits with high affinity is AKAP7delta [AKAP18delta; K(d) (equilibrium dissociation constant) value of 31 nM]. An N-terminally truncated AKAP7delta mutant binds RIIalpha subunits with higher affinity than the full-length protein presumably due to loss of an inhibitory region [Henn, Edemir, Stefan, Wiesner, Lorenz, Theilig, Schmidtt, Vossebein, Tamma, Beyermann et al. (2004) J. Biol. Chem. 279, 26654-26665]. In the present study, we demonstrate that peptides (25 amino acid residues) derived from the RII-binding domain of AKAP7delta bind RIIalpha subunits with higher affinity (K(d)=0.4+/-0.3 nM) than either full-length or N-terminally truncated AKAP7delta, or peptides derived from other RII binding domains. The AKAP7delta-derived peptides and stearate-coupled membrane-permeable mutants effectively disrupt AKAP-RII subunit interactions in vitro and in cell-based assays. Thus they are valuable novel tools for studying anchored PKA signalling. Molecular modelling indicated that the high affinity binding of the amphipathic helix, which forms the RII-binding domain of AKAP7delta, with RII subunits involves both the hydrophobic and the hydrophilic faces of the helix. Alanine scanning (25 amino acid peptides, SPOT technology, combined with RII overlay assays) of the RII binding domain revealed that hydrophobic amino acid residues form the backbone of the interaction and that hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction.  相似文献   
168.
Light strongly influences the circadian timing system in humans via non-image-forming photoreceptors in the retinal ganglion cells. Their spectral sensitivity is highest in the short-wavelength range of the visible light spectrum as demonstrated by melatonin suppression, circadian phase shifting, acute physiological responses, and subjective alertness. We tested the impact of short wavelength light (460 nm) on sleep EEG power spectra and sleep architecture. We hypothesized that its acute action on sleep is similar in magnitude to reported effects for polychromatic light at higher intensities and stronger than longer wavelength light (550 nm). The sleep EEGs of eight young men were analyzed after 2-h evening exposure to blue (460 nm) and green (550 nm) light of equal photon densities (2.8 x 10(13) photons x cm(-2) x s(-1)) and to dark (0 lux) under constant posture conditions. The time course of EEG slow-wave activity (SWA; 0.75-4.5 Hz) across sleep cycles after blue light at 460 nm was changed such that SWA was slightly reduced in the first and significantly increased during the third sleep cycle in parietal and occipital brain regions. Moreover, blue light significantly shortened rapid eye movement (REM) sleep duration during these two sleep cycles. Thus the light effects on the dynamics of SWA and REM sleep durations were blue shifted relative to the three-cone visual photopic system probably mediated by the circadian, non-image-forming visual system. Our results can be interpreted in terms of an induction of a circadian phase delay and/or repercussions of a stronger alerting effect after blue light, persisting into the sleep episode.  相似文献   
169.
Sesquiterpene lactones are characteristic natural products in Asteraceae, which constitutes ∼8% of all plant species. Despite their physiological and pharmaceutical importance, the biochemistry and evolution of sesquiterpene lactones remain unexplored. Here we show that germacrene A oxidase (GAO), evolutionarily conserved in all major subfamilies of Asteraceae, catalyzes three consecutive oxidations of germacrene A to yield germacrene A acid. Furthermore, it is also capable of oxidizing non-natural substrate amorphadiene. Co-expression of lettuce GAO with germacrene synthase in engineered yeast synthesized aberrant products, costic acids and ilicic acid, in an acidic condition. However, cultivation in a neutral condition allowed the de novo synthesis of a single novel compound that was identified as germacrene A acid by gas and liquid chromatography and NMR analyses. To trace the evolutionary lineage of GAO in Asteraceae, homologous genes were further isolated from the representative species of three major subfamilies of Asteraceae (sunflower, chicory, and costus from Asteroideae, Cichorioideae, and Carduoideae, respectively) and also from the phylogenetically basal species, Barnadesia spinosa, from Barnadesioideae. The recombinant GAOs from these genes clearly showed germacrene A oxidase activities, suggesting that GAO activity is widely conserved in Asteraceae including the basal lineage. All GAOs could catalyze the three-step oxidation of non-natural substrate amorphadiene to artemisinic acid, whereas amorphadiene oxidase diverged from GAO displayed negligible activity for germacrene A oxidation. The observed amorphadiene oxidase activity in GAOs suggests that the catalytic plasticity is embedded in ancestral GAO enzymes that may contribute to the chemical and catalytic diversity in nature.  相似文献   
170.

Background

Pancreatic ductal adenocarcinoma (PDAC) remains an important cause of cancer death. Changes in apoptosis signaling in pancreatic cancer result in chemotherapy resistance and aggressive growth and metastasizing. The aim of this study was to characterize the apoptosis pathway in pancreatic cancer computationally by evaluation of experimental data from high-throughput technologies and public data bases. Therefore, gene expression analysis of microdissected pancreatic tumor tissue was implemented in a model of the apoptosis pathway obtained by computational protein interaction prediction.

Methodology/Principal Findings

Apoptosis pathway related genes were assembled from electronic databases. To assess expression of these genes we constructed a virtual subarray from a whole genome analysis from microdissected native tumor tissue. To obtain a model of the apoptosis pathway, interactions of members of the apoptosis pathway were analysed using public databases and computational prediction of protein interactions. Gene expression data were implemented in the apoptosis pathway model. 19 genes were found differentially expressed and 12 genes had an already known pathophysiological role in PDAC, such as Survivin/BIRC5, BNIP3 and TNF-R1. Furthermore we validated differential expression of IL1R2 and Livin/BIRC7 by RT-PCR and immunohistochemistry. Implementation of the gene expression data in the apoptosis pathway map suggested two higher level defects of the pathway at the level of cell death receptors and within the intrinsic signaling cascade consistent with references on apoptosis in PDAC. Protein interaction prediction further showed possible new interactions between the single pathway members, which demonstrate the complexity of the apoptosis pathway.

Conclusions/Significance

Our data shows that by computational evaluation of public accessible data an acceptable virtual image of the apoptosis pathway might be given. By this approach we could identify two higher level defects of the apoptosis pathway in PDAC. We could further for the first time identify IL1R2 as possible candidate gene in PDAC.  相似文献   
[首页] « 上一页 [12] [13] [14] [15] [16] 17 [18] [19] [20] [21] [22] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号