首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3444篇
  免费   322篇
  国内免费   372篇
  2024年   11篇
  2023年   42篇
  2022年   103篇
  2021年   215篇
  2020年   131篇
  2019年   161篇
  2018年   156篇
  2017年   105篇
  2016年   142篇
  2015年   187篇
  2014年   261篇
  2013年   247篇
  2012年   316篇
  2011年   285篇
  2010年   194篇
  2009年   168篇
  2008年   176篇
  2007年   155篇
  2006年   141篇
  2005年   135篇
  2004年   137篇
  2003年   115篇
  2002年   101篇
  2001年   90篇
  2000年   73篇
  1999年   75篇
  1998年   42篇
  1997年   28篇
  1996年   24篇
  1995年   27篇
  1994年   19篇
  1993年   18篇
  1992年   6篇
  1991年   12篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   1篇
  1976年   1篇
  1965年   1篇
  1955年   1篇
  1951年   2篇
排序方式: 共有4138条查询结果,搜索用时 281 毫秒
991.
Zhou D  Han Y  Song Y  Tong Z  Wang J  Guo Z  Pei D  Pang X  Zhai J  Li M  Cui B  Qi Z  Jin L  Dai R  Du Z  Bao J  Zhang X  Yu J  Wang J  Huang P  Yang R 《Journal of bacteriology》2004,186(15):5138-5146
Genomics research provides an unprecedented opportunity for us to probe into the pathogenicity and evolution of the world's most deadly pathogenic bacterium, Yersinia pestis, in minute detail. In our present work, extensive microarray analysis in conjunction with PCR validation revealed that there are considerable genome dynamics, due to gene acquisition and loss, in natural populations of Y. pestis. We established a genomotyping system to group homologous isolates of Y. pestis, based on profiling or gene acquisition and loss in their genomes, and then drew an outline of parallel microevolution of the Y. pestis genome. The acquisition of a number of genomic islands and plasmids most likely induced Y. pestis to evolve rapidly from Yersinia pseudotuberculosis to a new, deadly pathogen. Horizontal gene acquisition also plays a key role in the dramatic evolutionary segregation of Y. pestis lineages (biovars and genomovars). In contrast to selective genome expansion by gene acquisition, genome reduction occurs in Y. pestis through the loss of DNA regions. We also theorized about the links between niche adaptation and genome microevolution. The transmission, colonization, and expansion of Y. pestis in the natural foci of endemic plague are parallel and directional and involve gradual adaptation to the complex of interactions between the environment, the hosts, and the pathogen itself. These adaptations are based on the natural selections against the accumulation of genetic changes within genome. Our data strongly support that the modern plague originated from Yunnan Province in China, due to the arising of biovar orientalis from biovar antiqua rather than mediaevalis.  相似文献   
992.
Members of the membrane-type matrix metalloproteinases (MT-MMPs) have been implicated in a wide range of physiological and pathological processes from normal development to tumor growth. Tethered on plasma membrane, these enzymes are potentially regulated by the trafficking machinery of the cells. Here we demonstrate that both MT1-MMP and MT3-MMP are internalized, transported to the trans-Golgi network through early endosomes, and recycled back to cell surface in 60 min in a manner distinct from the one employed by transferrin receptor. Interestingly, co-expressed MT1-MMP and MT3-MMP are localized and routed in the same vesicles throughout the trafficking process. We further demonstrated that the carboxyl-terminal sequence DKV(582) of MT1-MMP is required for its recycling, thus defining a novel recycling motif. These results suggest that MT-MMPs may coordinate their proteolytic activities through the cellular trafficking machinery.  相似文献   
993.
Trypsin-like serine proteases are involved in diverse biological processes such as complement activation, tissue remodeling, cellular migration, tumor invasion, and metastasis. Here we report a novel human C1r-like serine protease analog, CLSPa, derived from dendritic cells (DC). The 487-residue CLSPa protein contains a CUB domain and a serine protease domain, possessing characteristic catalytic triad but lacking typical activation/cleavage sequence. It shares great homology with complement C1r/C1s and mannose-associated serine proteases. CLSPa mRNA is widely expressed, especially abundant in placenta, liver, kidney, pancreas, and myeloid cells, which are a major resources of serine proteases. Upon stimulation by agonistic anti-CD40 Ab, TNF-alpha, or LPS, CLSPa mRNA expression was significantly up-regulated in monocytic cells and monocyte-derived immature DC. When overexpressed in 293T cells, CLSPa protein was synthesized into the culture supernatants as a secretory protein, which had an inhibitory effect on complement-mediated cytotoxicity to antibody-sensitized erythrocytes. However, CLSPa itself possesses little protease activity, but it plays an inhibitory role in other active protease catalytic processes. The identification of human CLSPa as a novel Clr-like protein might facilitate future investigation of the regulatory mechanism of CLSPa in complement pathways during inflammation.  相似文献   
994.
Dendritic cells (DCs) are the most potent antigen-presenting cells that play crucial roles in the regulation of immune response. Triptolide, an active component purified from the medicinal plant Tripterygium wilfordii Hook F., has been demonstrated to act as a potent immunosuppressive drug capable of inhibiting T cell activation and proliferation. However, little is known about the effects of triptolide on DCs. The present study shows that triptolide does not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10ng/ml, as demonstrated by phosphatidylserine exposure, mitochondria potential decrease, and nuclear DNA condensation. Triptolide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that the anti-inflammatory and immunosuppressive activities of triptolide may be due, in part, to its apoptosis-inducing effects on DCs.  相似文献   
995.
A novel inhibitory receptor of immunoglobin superfamily (IgSF), IgSF member 13 (IgSF13), has been identified from human dendritic cells (DC). IgSF13 is a type I transmembrane protein containing an N-terminal signal peptide, a extracellular region with a single Ig V-like domain, a transmembrane region, and a cytoplasmic tail with two classical immunoreceptor tyrosine-based inhibitory motifs (ITIM), suggesting its inhibitory function. IgSF13 shows significant homology to human CMRF35 and pIgR. IgSF13 gene is mapped to chromosome 17q25.2, very close to that of CMRF35. IgSF13 is preferentially expressed in myelo-monocytic cells, including monocytes, monocyte-derived DC, and monocyte-related cell lines. Upon pervanadate treatment, IgSF13 was hyper-phosphorylated and associated with Src homology-2 domain-containing phosphatases SHP-1 and SHIP, but not SHP-2. The identification of IgSF13 as a novel ITIM-bearing receptor selectively expressed by DC and monocytes suggests that it may be potentially involved in the negative regulation of specific leukocyte population.  相似文献   
996.
OCT4 plays a critical role in maintaining stem cell pluripotency in a dose-dependent manner by activating and repressing multiple downstream genes. The precise mechanism by which OCT4 achieves these diverse biological functions remains unknown. In this report, we identify and characterize (195)RKRKR as a nuclear localization signal responsible for its localization in the nuclei and required for the transactivation of its target genes. Point mutations within this motif yielded a mutant that localizes randomly throughout the cells and is defective in transactivating target genes. However, restoration of nuclear localization with a heterologous nuclear localization signal failed to rescue its transactivation function, suggesting that this (195)RKRKR motif has additional function in mediating transactivation function. We further demonstrate that this mutant is competent in dimerization with not only itself but also wild type OCT4 and can interfere with the activity of wild type OCT4, thus acting as a dominant negative mutant. Indeed, this mutant can induce the differentiation of P19 cells into trophoblast-like giant cells. These data suggest that this dominant negative form of OCT4 may be a useful tool for modulating the activity of OCT4 in pluripotent cells such as embryonic stem cells to achieve the desired cell types for therapeutic applications.  相似文献   
997.
A rare form of human ACAT1 mRNA, containing the optional long 5'-untranslated region, is produced as a 4.3-kelonucleotide chimeric mRNA through a novel interchromosomal trans-splicing of two discontinuous RNAs transcribed from chromosomes 1 and 7. To investigate its function, we express the chimeric ACAT1 mRNA in Chinese hamster ovary cells and show that it can produce a larger ACAT1 protein, with an apparent molecular mass of 56 kDa on SDS-PAGE, in addition to the normal, 50-kDa ACAT1 protein, which is produced from the ACAT1 mRNAs without the optional long 5'-untranslated repeat. To produce the 56-kDa ACAT1, acat1 sequences located at both chromosomes 7 and 1 are required. The 56-kDa ACAT1 can be recognized by specific antibodies prepared against the predicted additional amino acid sequence located upstream of the N-terminal of the ACAT1(ORF). The translation initiation codon for the 56-kDa protein is GGC, which encodes for glycine, as deduced by mutation analysis and mass spectrometry. Similar to the 50-kDa protein, when expressed alone, the 56-kDa ACAT1 is located in the endoplasmic reticulum and is enzymatically active. The 56-kDa ACAT1 is present in native human cells, including human monocyte-derived macrophages. Our current results show that the function of the chimeric ACAT1 mRNA is to increase the ACAT enzyme diversity by producing a novel isoenzyme. To our knowledge, our result provides the first mammalian example that a trans-spliced mRNA produces a functional protein.  相似文献   
998.
Go is the most abundant G protein expressed in brain but its function is less known. Here we show a novel function of Goalpha as a mediator of opioid receptor-induced extracellular signal-regulated kinase activation in neural cells. The current study found that, in neuroblastoma x glioma NG108-15 hybrid cells, activation of extracellular signal-regulated kinase through delta opioid receptors was mediated by pertussis toxin-sensitive G protein and independent of Gbetagamma subunits, PI3 kinase and receptor internalization. Overexpression of a dominant negative form of Goalpha1, but not Gialpha2, completely blocked delta opioid receptor-induced extracellular signal-regulated kinase activity. Decreasing Goalpha expression by RNA interference greatly reduced delta opioid receptor-induced extracellular signal-regulated kinase activity and extracellular signal-regulated kinase-dependent gene expression, while knocking down Gialpha2 did not. By taking advantage of differences between human and mouse Goalpha gene sequences, we simultaneously knocked down endogenous Goalpha expression and expressed exogenous human Goalpha subunits. We found that both human Goalpha1 and Goalpha2 could mediate delta opioid receptor-induced extracellular signal-regulated kinase activation. This study suggests that one of the functions of Goalpha in the brain is to mediate extracellular signal-regulated kinase activation by G protein-coupled receptors.  相似文献   
999.
Hawkins PR  Jin P  Fu GK 《BioTechniques》2003,34(4):768-70, 772-3
  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号