首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3354篇
  免费   322篇
  国内免费   363篇
  4039篇
  2024年   17篇
  2023年   47篇
  2022年   108篇
  2021年   207篇
  2020年   133篇
  2019年   157篇
  2018年   151篇
  2017年   105篇
  2016年   140篇
  2015年   185篇
  2014年   253篇
  2013年   243篇
  2012年   304篇
  2011年   279篇
  2010年   187篇
  2009年   164篇
  2008年   169篇
  2007年   149篇
  2006年   136篇
  2005年   128篇
  2004年   127篇
  2003年   108篇
  2002年   98篇
  2001年   90篇
  2000年   70篇
  1999年   72篇
  1998年   40篇
  1997年   25篇
  1996年   24篇
  1995年   27篇
  1994年   19篇
  1993年   18篇
  1992年   6篇
  1991年   12篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1979年   1篇
  1976年   1篇
  1965年   1篇
  1955年   1篇
  1951年   2篇
排序方式: 共有4039条查询结果,搜索用时 15 毫秒
211.
A new class of methionine aminopeptidase (MetAP) inhibitors, which contain an internal hydroxamate (N-acyl-N-alkylhydroxylamine) core as the metal-chelating group, has been designed, synthesized, and tested. The compounds exhibited reversible, competitive inhibition against Escherichia coli MetAP as well as human MetAP-1 and MetAP-2. The most potent inhibitor had a K(i) value of 2.5 microM and >20-fold selectivity toward E. coli MAP.  相似文献   
212.
Formalin-fixed paraffin embedded (FFPE) tumor tissue provides an opportunity to perform retrospective genomic studies of tumors in which chromosomal imbalances are strongly associated with oncogenesis. The application of comparative genomic hybridization (CGH) has led to the rapid accumulation of cytogenetic information on osteosarcoma (OS); however, the limited resolving power of metaphase CGH does not permit precise mapping of imbalances. Array CGH allows quantitative detection and more precise delineation of copy number aberrations in tumors. Unfortunately the high cost and lower density of BACs on available commercial arrays has limited the ability to comprehensively profile copy number changes in tumors such as OS that are recurrently subject to genomic imbalance. In this study a cDNA/EST microarray including 18,980 human cDNAs (which represent all 22 pairs of autosomal chromosomes and chromosome X) was used for CGH analysis of eight OS FFPE. Chromosomes 1, 12, 17, and X harbored the most imbalances. Gain/amplification of X was observed in 4/8 OS, and in keeping with other recent genomic analyses of OS, gain/amplification of 17p11.2 was often accompanied by a distal deletion in the region of the p53 gene. Gain/amplification of the X chromosome was verified using interphase FISH carried out on a subset of OS FFPE sections and OS tissue arrays.  相似文献   
213.
Four fractions from rat liver (a crude mitochondria (CM) and cytosol (C) fraction obtained with differential centrifugation, a purified mitochondrial (PM) fraction obtained with nycodenz density gradient centrifugation, and a total liver (TL) fraction) were analyzed with two-dimensional liquid chromatography tandem mass spectrometry analysis. A total of 564 rat proteins were identified and were bioinformatically annotated according to their physicochemical characteristics and functions. While most extreme alkaline ribosomal proteins were identified in the TL fraction, the C fraction mainly included neutral enzymes and the PM fraction enriched alkaline proteins and proteins with electron transfer activity or oxygen binding activity. Such characteristics were more apparent in proteins identified only in the TL, C, or PM fraction. The Swiss-Prot annotation and the bioinformatic prediction results proved that the C and PM fractions had enriched cytoplasmic or mitochondrial proteins, respectively. Combination usage of subcellular fractionation with two-dimensional liquid chromatography tandem mass spectrometry was proved to be a high-throughput, sensitive, and effective analytical approach for subcellular proteomics research. Using such a strategy, we have constructed the largest proteome database to date for rat liver (564 rat proteins) and its cytosol (222 rat proteins) and mitochondrial fractions (227 rat proteins). Moreover, the 352 proteins with Swiss-Prot subcellular location annotation in the 564 identified proteins were used as an actual subcellular proteome dataset to evaluate the widely used bioinformatics tools such as PSORT, TargetP, TMHMM, and GRAVY.  相似文献   
214.
Double-stranded DNA bacteriophages and herpesviruses assemble their heads in a similar fashion; a pre-formed precursor called a prohead or procapsid undergoes a conformational transition to give rise to a mature head or capsid. A virus-encoded prohead or procapsid protease is often required in this maturation process. Through computational analysis, we infer homology between bacteriophage prohead proteases (MEROPS families U9 and U35) and herpesvirus protease (MEROPS family S21), and unify them into a procapsid protease superfamily. We also extend this superfamily to include an uncharacterized cluster of orthologs (COG3566) and many other phage or bacteria-encoded hypothetical proteins. On the basis of this homology and the herpesvirus protease structure and catalytic mechanism, we predict that bacteriophage prohead proteases adopt the herpesvirus protease fold and exploit a conserved Ser and His residue pair in catalysis. Our study provides further support for the proposed evolutionary link between dsDNA bacteriophages and herpesviruses.  相似文献   
215.
Homoepiboxidine (3) and the corresponding N-methyl (4) and N-benzyl (5) derivatives were prepared from a 6beta-carbomethoxynortropane (8). Affinities and functional activities at neuromuscular, central neuronal and ganglionic-type nicotinic receptors were compared to those of epibatidine 1, and epiboxidine 2. Homoepiboxidine had equivalent affinity/activity to epiboxidine at neuromuscular, neuronal alpha4beta2, and most alpha3-containing ganglionic-type nicotinic receptors. The N-substituted derivatives showed reduced affinity/activity at most receptor subtypes. Replacement of the methylisoxazole moiety of 3 and 4 with a methyloxadiazole moiety provided analogues 6 and 7, which had greatly reduced affinity/activity in virtually all assays at nicotinic receptors. Marked analgetic activity in mice occurred at the following ip doses: epibatidine 10 microg/kg; epiboxidine 25 microg/kg; homoepiboxidine 100 microg/kg; N-methylhomoepiboxidine 100 microg/kg; the methyloxadiazole (6) 100 microg/kg. The time course at such ip doses was significantly longer for homoepiboxidine 3 with marked analgesia still manifest at 30 min post-injection. Epiboxidine and the homoepiboxidines were less toxic than epibatidine.  相似文献   
216.
BslI restriction endonuclease cleaves the symmetric sequence CCN(7)GG (where N=A, C, G or T). The enzyme is composed of two subunits, alpha and beta, that form a heterotetramer (alpha(2)beta(2)) in solution. The alpha subunit is believed to be responsible for DNA recognition, while the beta subunit is thought to mediate cleavage. Here, for the first time, we provide experimental evidence that BslI binds Zn(II). Specifically, using X-ray absorption spectroscopic analysis we show that the alpha subunit of BslI contains two Zn(Cys)(4)-type zinc motifs similar to those in the DNA-binding domain of the glucocorticoid receptor. This conclusion is supported by genetic analysis of the zinc-binding motifs, whereby amino acid substitutions in the zinc finger motifs are demonstrated to abolish or impair cleavage activity. An additional putative zinc-binding motif was identified in the beta subunit, consistent with the X-ray absorption data. These data were corroborated by proton induced X-ray emission measurements showing that full BslI contains at least three fully occupied Zn sites per alpha/beta heterodimer. On the basis of these data, we propose a role for the BslI Zn motifs in protein-DNA as well as protein-protein interactions.  相似文献   
217.
Saccharomyces cerevisiae Cet1 and Schizosaccharomyces pombe Pct1 are the essential RNA triphosphatase components of the mRNA capping apparatus of budding and fission yeast, respectively. Cet1 and Pct1 share a baroque active site architecture and a homodimeric quaternary structure. The active site is located within a topologically closed hydrophilic beta-barrel (the triphosphate tunnel) that rests on a globular core domain (the pedestal) composed of elements from both protomers of the homodimer. Earlier studies of the effects of alanine cluster mutations at the crystallographic dimer interface of Cet1 suggested that homodimerization is important for triphosphatase function in vivo, albeit not for catalysis. Here, we studied the effects of 14 single-alanine mutations on Cet1 activity and thereby pinpointed Asp280 as a critical side chain required for dimer formation. We find that disruption of the dimer interface is lethal in vivo and renders Cet1 activity thermolabile at physiological temperatures in vitro. In addition, we identify individual residues within the pedestal domain (Ile470, Leu519, Ile520, Phe523, Leu524, and Ile530) that stabilize Cet1 in vivo and in vitro. In the case of Pct1, we show that dimerization depends on the peptide segment 41VPKIEMNFLN50 located immediately prior to the start of the Pct1 catalytic domain. Deletion of this peptide converts Pct1 into a catalytically active monomer that is defective in vivo in S. pombe and hypersensitive to thermal inactivation in vitro. Our findings suggest an explanation for the conservation of quaternary structure in fungal RNA triphosphatases, whereby the delicate tunnel architecture of the active site is stabilized by the homodimeric pedestal domain.  相似文献   
218.
Triacylglycerols (TAG) are important energy storage molecules for nearly all eukaryotic organisms. In this study, we found that two gene products (Plh1p and Dga1p) are responsible for the terminal step of TAG synthesis in the fission yeast Schizosaccharomyces pombe through two different mechanisms: Plh1p is a phospholipid diacylglycerol acyltransferase, whereas Dga1p is an acyl-CoA:diacylglycerol acyltransferase. Cells with both dga1+ and plh1+ deleted (DKO cells) lost viability upon entry into the stationary phase and demonstrated prominent apoptotic markers. Exponentially growing DKO cells also underwent dramatic apoptosis when briefly treated with diacylglycerols (DAGs) or free fatty acids. We provide strong evidence suggesting that DAG, not sphingolipids, mediates fatty acids-induced lipoapoptosis in yeast. Lastly, we show that generation of reactive oxygen species is essential to lipoapoptosis.  相似文献   
219.
Yushmanov VE  Mandal PK  Liu Z  Tang P  Xu Y 《Biochemistry》2003,42(13):3989-3995
The structure and backbone dynamics of an extended second transmembrane segment (TM2e) of the human neuronal glycine receptor alpha(1) subunit in sodium dodecyl sulfate micelles were studied by (1)H and (15)N solution-state NMR. The 28-amino acid segment contained the consensus TM2 domain plus part of the linker between the second and third transmembrane domains. The presence of a well-structured helical region of at least 13 amino acids long and an unstructured region near the linker was evident from the proton chemical shifts and the pattern of midrange nuclear Overhauser effects (NOE). (15)N relaxation rate constants, R(1) and R(2), and (15)N-[(1)H] NOE indicated restricted internal motions in the helical region with NOE values between 0.6 and 0.8. The squared order parameter (S(2)), the effective correlation time for fast internal motions (tau(e)), and the global rotational correlation time (tau(m)) were calculated for all TM2e backbone N-H bonds using the model-free approach. The S(2) values ranged about 0.75-0.86, and the tau(e) values were below 100 ps for most of the residues in the helical region. The tau(m) value, calculated from the dynamics of the helical region, was 5.1 ns. The S(2) values decreased to 0.1, and the tau(e) values sharply increased up to 1.2 ns at the linker near the C-terminus, indicating that the motion of this region is unrestricted. The results suggest a relatively high degree of motional freedom of TM2e in micelles and different propensities of the N- and C-terminal moieties of the transmembrane domain to assume stable helical structures.  相似文献   
220.
The special physical state of the sphingolipid-enriched membranes with characteristic lipid composition, presently one of the most controversial foci in cell biology, provides the essential environment for the proteins inside to be involved in the related physiological processes. The role of gangliosides, an important component of the membranes, deserves attention. The present investigation using several biophysical techniques indicates that ganglioside GM(1) induces the phase separation in the sphingomyelin membrane with 5 mol% cholesterol and regulates the membrane structure. The results of differential scanning calorimetry show that a higher T(m), GM(1)-rich phase emerges behind the lower T(m), sphingomyelin-rich phase with the incorporation of GM(1) into the sphingomyelin/cholesterol bilayers; and the GM(1)-rich phase dominates the membrane when the proportion of GM(1) reaches about 20 mol%. Fluorescence quenching further shows that the separation of the two domains is independent of temperature, occurring both in the gel phase and in the liquid phase. Laser Raman spectroscopy and fluorescence polarization suggest that the order of hydrocarbon chains increases and membrane fluidity decreases with increase in GM(1) content. Use of the fluorescence probe merocyanine-540 and electron microscopy reveals that the insertion of GM(1) leads to an increase in the spatial density of the lipid headgroups and a decrease in the curvature of the sphingomyelin/cholesterol bilayers. In sums, both the hydrophilic sugar heads and the hydrophobic hydrocarbon chains of GM(1) contribute to the regulation of membrane architecture. We suggest that the convex curvature of ganglioside-enriched membrane could be involved in forming and maintaining the characteristic flask-shaped invagination of caveolae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号